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ABSTRACT

Understanding the complex and varied mechanisms
that regulate gene expression is an important and
challenging problem. A fundamental sub-problem is
to identify DNA binding sites for unknown regula-
tory factors, given a collection of genes believed to
be co-regulated. We discuss a computational
method that identi®es good candidates for such
binding sites. Unlike local search techniques such
as expectation maximization and Gibbs samplers
that may not reach a global optimum, the method
discussed enumerates all motifs in the search
space, and is guaranteed to produce the motifs with
greatest z-scores. We discuss the results of valid-
ation experiments in which this algorithm was used
to identify candidate binding sites in several well
studied regulons of Saccharomyces cerevisiae,
where the most prominent transcription factor bind-
ing sites are largely known. We then discuss the
results on gene families in the functional and
mutant phenotype catalogs of S.cerevisiae, where
the algorithm suggests many promising novel tran-
scription factor binding sites. The program is avail-
able at http://bio.cs.washington.edu/software.html.

INTRODUCTION

One of the major challenges facing biologists is to understand
the varied and complex mechanisms governing the regulation
of gene expression. This paper focuses on one important
aspect of this challenge, the identi®cation of binding sites in
DNA for the factors involved in regulation. This is a necessary
®rst step in determining which factors regulate the gene
and how.

The analysis of non-coding regions in eukaryotic genomes
in order to identify regulatory elements is a dif®cult problem
and one that is not yet well solved. Some of the reasons for
this dif®culty are as follows: (i) binding sites of multiple
interacting transcription factors often play a role in the
regulation of a single gene; (ii) there can be great variability in
the binding sites of a single factor, and the nature of the
allowable variations is not well understood; (iii) the regulatory

elements may be located quite far from the corresponding
coding region, either upstream or downstream or in the
introns.

Any algorithm whose goal is to discover novel regulatory
elements takes as input a set of regulatory regions of genes,
many of which are suspected to contain a common regulatory
element. There are many possible sources for such co-
regulated genes, including expression microarray experi-
ments, gene knockout experiments and functional classes
from the literature. This paper focuses on the regulation of
genes in the yeast Saccharomyces cerevisiae, since much is
known both about its transcription factors and about the
functions of its genes.

A number of algorithms to discover general motifs have
been proposed (1±9). Many of these algorithms are designed
to ®nd longer or more general motifs than are required for
identifying transcription factor binding sites. The price paid
for this generality is that many of the cited algorithms are not
guaranteed to ®nd globally optimal solutions, since they
employ some form of local search, such as Gibbs sampling,
expectation maximization or greedy algorithms, that may
terminate in a locally optimal solution. There have been some
studies that have applied these local search techniques
speci®cally to the problem of identifying transcription factor
binding sites in S.cerevisiae, with some success (10±14).

The number of well conserved bases in the collection of
binding sites of a single S.cerevisiae transcription factor is
typically six to ten (15±16). This number is small enough that,
for this particular problem, one need not rely on such general
local search heuristics. Instead, one can afford to use
enumerative methods that guarantee global optimality. This
is the approach taken by the current paper, whose method is
most closely allied to those of van Helden et al. (17±19) and
Tompa (20). There are also other studies using an enumerative
approach to motif ®nding (21±23).

We review a motif model that is tailored to accurately
represent transcription factor binding sites in S.cerevisiae. We
then review an enumerative algorithm from Sinha and Tompa
(24) called YMF (Yeast Motif Finder) which, given the
regulatory regions of several related genes, is guaranteed to
produce the motifs with greatest z-scores. The present paper
focuses on the application of that method to classes of yeast
genes. We ®rst present the results of validation experiments in
which YMF was used to identify candidate binding sites in
several well studied regulons of S.cerevisiae, where the
most prominent transcription factor binding sites are largely
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known. We then present results on gene families in the
functional and mutant phenotype catalogs of S.cerevisiae
taken from the MIPS database (25), where YMF suggests
many novel transcription factor binding sites. Our goal was to
discover motifs in the classes from these catalogs, since genes
with common mutant phenotypes or common function may
have the same regulatory mechanism and hence may share
informative binding sites.

Hughes et al. (11) performed a similar analysis of the MIPS
functional catalog using AlignACE, a local search algorithm
based on Gibbs sampling. There are a number of differences
between their results and ours. Most important is that
differences in the motif model and search method (local
search heuristic versus enumerative search) lead to different
signi®cant motifs. In a separate paper (S.Sinha and M.Tompa,
in preparation) we compare the accuracy of YMF and other
methods such as AlignACE on both simulated data and on
yeast regulons. Those results suggest that YMF may provide
more accurate prediction of regulatory elements. A second
difference is that Hughes et al. (11) merge motifs found in
different functional classes. As a result, the important
connection between transcription factor binding site and
gene function, necessary for understanding regulatory rela-
tionships, is not apparent from their tables, whereas it is
explicit in ours. Finally, Hughes et al. (11) report results only
on the functional catalog and not on the mutant phenotype
catalog.

MATERIALS AND METHODS

Variability among binding site instances

The ®rst question that must be addressed is `What constitutes a
motif?' for the application of transcription factor binding sites
in S.cerevisiae. An inspection of transcription factor databases
such as TRANSFAC (15; http://transfac.gbf-braunschweig.de/
TRANSFAC/) and SCPD (16; http://cgsigma.cshl.org/jian/)
and of the relevant literature (26±33), particularly Jones et al.
(26), which is rich in examples, reveals that there is signi®cant
variation among the binding sites of any single transcription
factor. Moreover, the nature of the variability itself varies
from factor to factor, so that the `correct' motif model is far
from clear.

Certain trends that must be incorporated in the motif model
do, however, emerge from this literature, particularly from
SCPD (see the column labeled `Consensus' in Table 1 for
examples). (i) Many of the motifs, such as the Gal4p binding
site CGGNNNNNNNNNNNCCG, have spacers varying in
length from 1 to 11 bp. The spacers usually occur near the
middle of the motif, often because the factors bind as dimers
or tetramers. (ii) The number of well conserved bases (not
including spacers, of course) is usually in the range 6±10.
This number is called the length of the motif. (iii) When
there is variation in a conserved motif position, it is often a
transition (i.e. the substitution of a purine for a purine or
a pyrimidine for a pyrimidine) rather than a transversion. This
is because of the similarity in nucleotide size necessary to ®t
the transcription factor's ®xed DNA-binding domain.
Somewhat less often, the variation in a given position may
be between a pair of complementary bases. Other positional
variations are rarer. (iv) Insertions and deletions among

binding sites are uncommon, again because of the ®xed
structure of the factor's DNA-binding domain.

Based on these observations, a motif for our application is a
string of length 6±10 over the alphabet {A,C,G,T,R,Y,S,W},
with 0 or more consecutive N residues inserted at the center,
and a limited number of R (purine), Y (pyrimidine), S (strong)
and W (weak) characters, also called degenerate symbols. We
choose such a consensus model rather than (say) a weight
matrix in order to be able to enumerate motifs. An examin-
ation of the 50 binding site consensi included in SCPD (16)
revealed that the number of consensi that exactly ®t this
characterization is 34 (68%). About 10 more ®t the
characterization if very slight differences from the exact
consensus are tolerated.

Measure of statistical signi®cance

Given some set of (presumably co-regulated) S.cerevisiae
genes, the input to YMF is the corresponding set of promoter
regions, each having length 800 bp and having its 3¢ end at the
gene translation start site. For each motif s, let Ns be the
number of occurrences of s in the input sequences, allowing an
arbitrary number of occurrences in both orientations per
promoter region. A reasonable measure of s as a motif will
re¯ect how unlikely it would be to have Ns occurrences, if the
sequences were instead drawn at random according to the
background distribution. We use as this measure the statistical
signi®cance of the `z-score' of Ns. First, to specify the
background distribution, let X be a set of random DNA
sequences of the same number and length as the input
promoter sequences, but generated by a Markov chain of order
m, whose transition probabilities are determined by the (m + 1)
mer frequencies in the full complement of 6000+ promoter
regions (each of length 800 bp) of S.cerevisiae. In our
experiments, we chose m = 3 in order for the background
model to account for the TATA, AAAA and TTTT sequences
that are ubiquitous throughout the genome's promoter regions
(17). Let the random variable Xs be the number of occurrences
of the motif s in these random sequences X and let E(Xs) and
s(Xs) be its mean and standard deviation, respectively. Then
the z-score associated with s is

zs = (Ns ± E(Xs))/s(Xs) 1

The measure zs is the number of standard deviations by
which the observed value Ns exceeds its expectation. See
Leung et al. (34) for a detailed discussion of this statistic.

The z-score zs obeys a normal distribution in the asymptotic
limit as the total length of the input promoter regions increases
(35). If the assumption of normality is inaccurate, it may not
be as meaningful to compare the z-scores of different motifs.
In view of this, YMF will be most accurate when the total
length of the input promoter region is large. The ultimate test
of the method, however, is not whether the z-score passes
normality tests, but whether YMF successfully predicts true
transcription factor binding sites. Therefore, in order to
demonstrate the robustness of the method, in the validation
experiments on known regulons we report the results on
regulons consisting of as few as three genes.

Since YMF enumerates a large motif space, thereby
sampling a large number of points from the distribution, it is
expected that some motifs will have a high z-score by chance.
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To address this, we associate with z-score x a signi®cance
pmax(x), which measures the probability that the maximum
z-score is at least x, if the input sequences were random. This
maximum is taken over all motifs of the given length, number
of spacers and number of degenerate symbols. We precompute
pmax for a variety of motif parameters and input sequence
lengths, by simulation. Random sequences of the same length
as the input promoter regions are generated according to the
Markov model being used, and YMF is run on these random
sequences. The maximum z-score reported is recorded. This
experiment is repeated 100 times. The fraction of experiments
that yielded maximum z-score at least x is used as an estimate
of pmax(x).

Algorithm summary

The algorithm used by YMF is summarized here. The inputs
to the algorithm are as follows: (i) a set of promoter regions;
(ii) the number l of non-spacer characters in the motifs to be
enumerated (called the motif length); (iii) the maximum
number w of spacers in the motifs; (iv) the transition matrix
for a third order Markov chain modeling the background
distribution of promoter regions.

The parameters l and w, along with the implicitly assumed
motif model, de®ne a search space of all candidate motifs that
will be evaluated. This space consists of all motifs that have l
characters from {A,C,G,T,R,Y,S,W}, and between 0 and w
spacers (N) in the middle. Typically, the maximum number of
degenerate symbols (R, Y, S or W) was restricted to 2 for
computational ef®ciency, although YMF can be con®gured to
handle different values of this parameter. YMF ®rst makes a
pass over the input sequences, tabulating the number Ns of
occurrences of each motif s in either orientation, including
overlapping occurrences. For each motif s for which Ns > 0, it
then computes the mean and standard deviation of the motif
count using a method described by Sinha and Tompa (24).
Finally, it uses equation 1 to compute the z-score zs and
pmax(zs) and outputs the motifs sorted by z-score.

Because the number of motifs is exponential in l, we can
afford this enumerative method only for modest values of l. In
contrast, however, the running time is linear in the size of the
input sequences, so that the method scales very well to larger
gene families and longer promoter regions. The current
implementation typically runs in a few seconds for motifs of
length 6 on a Pentium processor with 256 MB memory. For
length 9 motifs it requires a few minutes.

Both a web interface and the source code for YMF are
freely available at http://bio.cs.washington.edu/software.html.

Experimental methods

The maximum number w of spacers allowed in a motif was
varied depending on the motif length parameter l. For l = 6, we
used w = 11, which means that length 6 motifs were allowed to
have between 0 and 11 spacers in the middle. This is in accord
with observed motifs from SCPD. However, this introduces an
inherent bias in the method toward ®nding motifs with
spacers, since there are 11 times as many motifs with spacers
as without. To include some runs without this bias, when YMF
was run with l > 6, we used w = 0, i.e. no spacers allowed.

There are three different types of post-processing steps that
were used to produce the most promising candidate binding
sites to report. The ®rst is a tool called FindExplanators (36).

A set of promoter sequences having bindings sites for a few
different transcription factors typically contains hundreds of
statistically overrepresented motifs, most of them being minor
variations of the true binding site motifs. YMF will report all
these overrepresented motifs. For example, suppose a factor
binds to TCACGCT in a set of sequences, causing this motif to
be overrepresented. Many of its variations, e.g. CACGCTT or
TCACGCW, are also likely to be overrepresented, simply
because each has its number of occurrences arti®cally
increased by the presence of TCACGCT. FindExplanators is
a tool that extracts the few signi®cantly independent motifs
from the vast number that are simply artifacts of these few.

Since YMF evaluates a motif based on its total number of
occurrences in a set of sequences, a motif may have a high
z-score (low pmax) even if it occurs unusually often in only one
of the promoters. Such motifs may not be interesting
candidates for transcription factor binding sites. Multiple
occurrences of a motif in a promoter suggest some signi®-
cance, but a very large number of occurrences in the same
promoter may suggest a repetitive element rather than a
regulatory element. Thus motifs are post-processed so that
those that have high z-scores due to a large number of
occurrences in one or two promoters are not reported. For this
purpose we developed a numerical measure that captures the
notion of a motif being well distributed among the promoters.
Given a set X of promoters and a motif s, we ®rst count the
occurrences of s in each promoter. Let X+ be the set of
promoters that have at least one occurrence of s and let D =
{d1, d2, ..., dp} (where p = |X+|) be the distribution of
occurrences of s in X+. Intuitively, a well distributed motif is
one for which D has a low variance. However, the variance
itself is not comparable for sample distributions obtained from
different populations, so we normalize it by dividing by the
expectation. Thus, our statistic is w = Si = 1 ¼ p (di ± m)2/m,
where m is the mean of the distribution D. We call this the
w-score of motif s. Lower values of the w-score indicate better
distributed motifs. Note that w is identical to the c2 statistic
and we use the c2 distribution with p ± 1 degrees of freedom to
compute a signi®cance threshold on the w-score. Notice that
we compute w from X+ and not from X, since in general we
may not ®nd the binding site present in all the input promoter
sequences.

As another means of evaluating the motifs, we introduce a
co-expression score, which measures the similarity of the
expression pro®les of the genes corresponding to X+. This
score is computed from data in the database ExpressDB (37),
which catalogs mRNA expression level information from
several different studies under a common framework. The
expression data is normalized across studies by converting
them into estimated relative abundancies or `ERAs'. Such
values are available for all yeast genes under 217 different
conditions. For each pair of genes, we compute the correlation
coef®cient of their ERA values. Given the set X+, we compute
the average pairwise correlation coef®cient over all pairs of
genes in X+. We then estimate a p-value of this average
pairwise correlation coef®cient, by choosing |X+| random
genes and computing the same score for these, and repeating
several times. This p-value is called the co-expression score of
X+ and a low value indicates that the genes in X+ have an
unusually high pairwise correlation coef®cient on average.
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RESULTS AND DISCUSSION

Validation on known regulons

The SCPD database (16) has a collection of transcription
factors and the genes regulated by each factor. Each such set
of genes comprises a regulon. For each gene in a regulon, the
database lists the experimentally determined binding sites of
the transcription factor, and in many cases the consensus
sequence of the binding sites in the regulon is also given. It is
not always clear from the binding sites alone what their
consensus should be, because there is often more than one way
to align them, and to choose a consensus with degenerate
symbols. Hence, we rely on the consensus listed at SCPD.
YMF was run on each regulon in SCPD that has at least three
genes and has a cataloged consensus sequence for its binding
sites. There are 23 such regulons. The success of YMF was
assessed by comparing the top motifs reported with the known
consensus for the regulon. The program was run three times on
each regulon, to ®nd motifs of length 6, 7 and 8, respectively.
For length 6 motifs, a maximum of 11 spacers in the middle
was allowed. For lengths 7 and 8, the motif model did not
include spacers (see Materials and Methods for details). In all
runs, a maximum of two degenerate symbols (R, Y, S or W)
was allowed in the candidate motifs.

The results are summarized in Table 1. Each row corres-
ponds to a regulon. For each of the three runs of YMF on that
regulon, the motif with greatest z-score is presented, along
with its total count in the input promoter regions, its z-score z,
and pmax(z). Lower pmax values are indicative of higher
statistical signi®cance (see Materials and Methods). Reported
motifs that can be superimposed with the known consensus for
the regulon without con¯icting characters at any position, and
that have at least four positions (possibly degenerate symbols)
identical to the consensus are considered matches and are
typeset in bold.

For 15 of the 23 regulons, the top motif reported (for one or
more values of the motif length parameter) was a match. For
14 of the 15 regulons, there was a match with pmax < 0.1, the
exception being MATa2. In another regulon, MCM1, the top
ranking motifs (for length 6) were variants of the poly(A)
element (any motif that can be instantiated to a string of all A
residues, e.g. AAAAWAAA), and the ®rst non-poly(A) motif,
at rank 11 with pmax 0.01, was CCSNNNNAGG, similar to the
known consensus CCNNNWWRGG. For the regulon RAP1,
the top motif reported (for length 7) is GCAYGTG, which
matches part of the inositol/choline response element (ICRE)
with consensus SCAYRTGAARW (we discuss this motif and
its connection to the RAP1 regulon below). The ®rst motif
reported by YMF (for the same length parameter) that is not a
variant of GCAYGTG is RCACCCA, at rank 11 with pmax

0.02. Note that this closely matches the known consensus
RMACCCA for the RAP1 regulon. For the regulon
HSE,HSTF, the consensus cataloged at SCPD is
GAANNTCC. However, an alignment of the known binding
sites of this transcription factor, as reported in the same
database, reveals a consensus pattern of TCTAGAA. This
closely matches the top motif TCYAGAA reported by YMF
for length 7. Thus, counting MCM1, RAP1 and HSE,HSTF
also as successes, we are left with only ®ve regulons (GCR1,
ROX1, SFF, TBP and UASPHR) on which YMF failed to

report any match to the known binding site consensus. Note
that the 23 regulons represent the typical input for a motif-
®nder; they are of varying sizes (3±38 genes) and have a
variety of known binding sites (length 5±10, with few to many
spacers or degenerate symbols). The results thus demonstrate
the applicability of the method on a variety of data sets.

In most cases, a match was found in the top three motifs for
multiple values of l, indicating that the performance is not
crucially dependent on prior knowledge of the motif length. In
some cases, YMF found a match even though the known
consensus of the binding site does not conform to the motif
model YMF uses. For instance, the regulon SCB has the
sequence CNCGAAA as its binding site consensus, with an
`N' that is not in the middle. Nevertheless, a very similar motif
CACGAAA was reported. Similarly, for HAP1 (consensus
CGGNNNTANCGG), the motif SGGNNNNNNSGG was
discovered.

The regulon ABF1 is an example of a case where multiple
occurrences of the binding site are found in the same promoter
region. Of the 19 genes in this regulon, eight have two or more
occurrences of the motif TCRNNNNNNACG in their pro-
moter region. There are a total of 36 occurrences of the motif,
giving it a very high z-score of 10.07. If each of the 19 genes
had only one occurrence of the motif, for a total of 19
occurrences, the z-score would have been about 4.03, which is
rather low, meaning that the motif would not have been
reported as signi®cant.

As noted above, a pmax value of 0.1 or less served as a good
indicator of a signi®cant motif, in the sense that most of the
matches occurred with pmax < 0.1. We therefore examined all
motifs (from Table 1) that are reported to have a pmax value
less than this threshold, to see if there are interesting signals in
the regulon that are different from the known binding sites,
and also to have an idea of the false positive rate. Table 2
summarizes our observations. It includes each motif from
Table 1 that has a pmax value <0.1, is not a poly(A), poly(T) or
TATA motif and is not a match. There are 13 such motifs.
Three of them (CGCWCGG and CGCACGGA in the GAL4
regulon and ARCCGCCG in the MIG1 regulon) occur
overlapping with known Gal4 binding sites in the respective
promoters. The motif CGGNNNNNNNNNNNCCG in the
MIG1 regulon is identical to the Gal4 binding site consensus,
and this family contains the genes Gal3, Gal10, Gal1 and
Gal4, which are known to contain this binding site. The motif
GCAYGTG in the RAP1 regulon matches a pre®x of the ICRE
consensus SCAYRTGAARW (38,39). Among the genes of
this regulon are Fas1, known to contain the ICRE motif (40),
and Opi3 and Itr1, both known to have the similar motif
CATGTGAA, which is shared by promoters of phospholipid
synthetic enzymes such as these two (25). Thus, for ®ve of the
motifs in Table 2, there is strong evidence that they correspond
to known binding sites of other transcription factors, leaving
eight motifs about which we do not have any clear evidence.
Even if we regard all these eight motifs as spurious, the
resulting false positive rate would be small, considering that a
total of 39 motifs in Table 1 meet the criteria of having pmax

< 0.1 and not being a poly(A), poly(T) or TATA motif. Some
occur at approximately conserved positions relative to the
translation start site, strengthening the possibility that they
might be targets of other transcription factors.
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Results on MIPS catalogs

The MIPS database at the Munich Information Center for
Protein Sequences (25) catalogs yeast genes classi®ed accord-
ing to different criteria. One such catalog is based on gene
function, while another classi®es genes based on phenotypes
with which mutant versions of the genes have been implicated.
These catalogs will be referred to as the functional and the
phenotype catalogs, respectively. Each catalog has a hier-
archical organization, the different levels of the hierarchy
corresponding to different degrees of speci®city of the
classi®cation criterion. Our goal was to discover motifs in
the classes from these catalogs, since many genes with
common mutant phenotypes or common function may have
the same regulatory mechanism and hence may share binding
sites. We extracted from each catalog the classes that were at
or near the bottom of the hierarchy and had ®ve or more genes.
YMF was run on the 800 bp long promoter regions of genes in
each class, with the same set of parameter values as in the
experiments on SCPD regulons. In some cases, a class of
genes contains one or more pairs of divergent genes, whose
promoter regions overlap. For such pairs, the single promoter
region between the two genes replaced two separate pro-
moters. The top 1000 motifs from each of the three runs of
YMF were input to the program FindExplanators (see
Materials and Methods), which reported the three best
independent motifs in its input list of 1000 motifs. For classes
with over 100 genes, only the single best motif of the 1000 was
reported, for computational ef®ciency. For each motif
obtained from the previous step, the w-score (see Materials
and Methods) was computed to measure how well distributed
the motif is, and motifs with poor w-scores (at 95% level of
signi®cance) were rejected. All motifs with pmax > 0.1, as well
as those that are poly(A), poly(T) or TATA repeats, were
rejected. Matches of each of the remaining motifs to binding
sites of known transcription factors in yeast (as cataloged in
the database TRANSFAC) are reported. Also, for each
remaining motif, the co-expression score was computed (see
Materials and Methods) for the set of genes in the class that
contain the motif in their promoters.

Functional catalog. There were 204 classes extracted from the
functional catalog and the motif-®nding steps reported a total

of 465 motifs. Tables 3 and 4 present a selection of the results.
This selection was done by manual inspection of the 930
reported motifs, using the following more stringent criteria.
Motifs with pmax > 0.05 were eliminated. If a single functional
class had motifs of different lengths that were variants of each
other, only that with the least pmax value was retained. Motifs
that had more than two matches to known binding sites of the
same transcription factor are presented in Table 3, while the
others are in Table 4, and are good candidates as novel
transcription factor binding sites.

Most of the motifs in Table 3 match the known binding site
consensus of some transcription factor, in which case the name
of the factor is reported along with the consensus. Some of the
motifs in this table do not match a known consensus, but do
match two or more binding sites of a single transcription
factor. For such motifs, we report the name of the factor, along
with the number of matching binding sites. In either case, it
would be interesting to pursue, for each of the motifs in the
table, whether the transcription factor whose binding sites it
matches has some regulatory role for the genes in that
functional class. For instance, the motif CACGTGSG, which
matches the Pho4 consensus, is found to be signi®cant in the
functional class `phosphate metabolism' (Table 3), and it may
be veri®ed from the literature that the Pho4 transcription factor
indeed regulates many of the genes in this class that have the
motif in their promoters. Many other similar connections can
be found in the comments column of Table 3.

We will now discuss some of the most interesting obser-
vations from Table 4, showing that some of these motifs are
excellent candidates as novel transcription factor binding sites.
The 7mer CGATGAG is highly overrepresented in the
promoters of the functional class `rRNA transcription'. This
motif was also discovered by Hughes et al. (11), who
recognized it as the PAC box (41), an element for which
neither function nor binding factor has been identi®ed. It
occurs a total of 50 times in 45 of the 109 promoters in the
class, with a z-score of 17.00 and pmax < 0.01. It is a very well
distributed motif, its 50 occurrences being spread over
45 promoters. Moreover, these 45 promoters belong to genes
that are highly co-expressed. Their co-expression score is
0.04, which means that the average pairwise correlation
coef®cient of their expression data has a p-value of 0.04.
Another property that makes this motif a very compelling
candidate for a binding site is its extremely high conservation

Table 2. Motifs in SCPD regulons that are different from the known principal binding sites

Name Motif Ns z pmax Comments

CSRE CTCCGGG 3 10.22 0.04 Occurs in 2 of 4 genes; roughly conserved in position
CGGGCCCG 2 14.79 0.08 Occurs in only one gene

GAL4 CGCWCGG 6 13.11 0.00 All occurrences overlap Gal4-binding sites (in Gal1, Gal2, Gal7 and Gal10)
CGCACGGA 3 17.14 0.00 All occurrences overlap Gal4-binding sites (in Gal1, Gal2 and Gal7)

GCR1 CGGGATTC 3 13.92 0.08 Occurs in 3 of 6 genes; roughly conserved in position
MIG1 CGGN[11]CCG 16 14.95 0.00 Is identical to the GAL4 motif

ARCCGCCG 5 13.20 0.05 Occurs overlapping known Gal4-binding sites in Gal3, Gal10 and Gal1.
The other two occurrences are in Fbp and Fps1

RAP1 CSCNNNCRC 30 9.30 0.00 Occurs in 13 of 16 genes; roughly conserved in position
GCAYGTG 13 10.37 0.00 Is similar to the ICRE motif (39)
CCCGWYGC 7 11.37 0.06 Occurs in 3 of 16 genes; well conserved position

ROX1 CCGACGTC 2 15.99 0.09 Occurs only in Rox1 gene
UASPHR CRRCAAC 26 8.15 0.02 Occurs in 7 of 17 genes; roughly conserved in position

CARCARCA 25 13.49 0.01 Occurs in 3 of 17 genes; not conserved in position

The table lists the motif sequence, its total count Ns, its z-score z, and pmax(z).
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Table 3. Signi®cant motifs in classes from the MIPS functional catalog

Name Motif Ns z pmax Comments

Regulation of amino acid metabolism YCACGTGC 11 14.78 0.00 CBF1 (TCACGTG) has role in amino acid metabolism (MIPS)
Nitrogen and sulfur metabolism TCACGTG 18 7.94 0.00 CBF1 (TCACGTG) has role in nitrogen and sulfur metabolism (MIPS)
Tricarboxylic acid pathway TCACGTG 11 8.45 0.00 CBF1 (TCACGTG)
Other transcription activities TCACGTG 16 7.65 0.00 CBF1 (TCACGTG)
Mitochondrial transport TCACGTG 19 7.41 0.00 CBF1 (TCACGTG)
Anion transporters (Cl, PO4 etc.) CACGTG 20 6.89 0.00 PHO4 (CACGTK) has role in phosphate metabolism (MIPS)
Phosphate metabolism CACGTGSG 12 19.09 0.00 PHO4 (CACGTK) has role in phosphate metabolism (MIPS)
Homeostasis of phosphate CACGTGSG 5 17.53 0.00 PHO4 (CACGTK) has role in phosphate metabolism (MIPS)
DNA synthesis and replication ACGCGW 124 16.04 0.00 MCBF (WCGCGW) is involved in DNA synthesis (45)
DNA repair ACGCGWW 49 7.77 0.00 MCBF (WCGCGW) binds to MCB in DNA replication genes

(TRANSFAC)
Deoxyribonucleotide metabolism ACGCGY 27 11.85 0.00 MCBF (WCGCGW) is involved in DNA synthesis (45)
Cellular import YCCCCAC 27 7.69 0.00 MIG1 (CCCCRNNWWWWW) is known to regulate some of the

HXT genes in this class (43)
C-compound, carbohydrate transport CYCCRC 77 10.43 0.00 MIG1 (CCCCRNNWWWWW) has role in C-compound

metabolism (MIPS)
C-compound, carbohydrate transporters CCCCRC 40 9.39 0.00 MIG1 (CCCCRNNWWWWW) has role in C-compound

metabolism (MIPS)
Meiosis TAGCCGCC 23 23.54 0.00 Repressor-of-CAR1 (AGCCGCCR) has role in meiosis (MIPS)
Amino acid transporters GCCGCCGA 5 12.81 0.00 Repressor-of-CAR1 (AGCCGCCR) has role in amino acid

metabolism (MIPS)
Homeostasis of metal ions GSACCC 46 7.60 0.00 Rap1 (RMACCCA)
Cation transporters GSACCC 42 6.71 0.00 Rap1 (RMACCCA)
Regulation of amino acid metabolism RTGN[5]GTR 93 8.91 0.00 Matches 9 RAP1 binding sites
Ribosome biogenesis AYCCRTAC 104 28.87 0.00 Matches 4 RAP1 binding sites. Rap1 controls transcription

of most ribosome protein genes (MIPS)
Assembly of protein complexes TTANCCG 52 7.21 0.00 REB1 (YYACCCG)
Cytoplasmic and nuclear degradation TTACCCG 28 10.93 0.00 REB1 (YYACCCG)
Vesicular transport (Golgi network) TACCCGG 22 9.20 0.00 REB1 (YYACCCG)
Cellular communication mechanism TTACCCG 17 8.62 0.00 REB1 (YYACCCG)
Cell growth/morphogenesis TYACCCG 30 7.86 0.00 REB1 (YYACCCG)
Intracellular transport vesicles TACCCGG 11 8.65 0.00 REB1 (YYACCCG)
Vacuole or lysosome TTACCCG 15 7.51 0.00 REB1 (YYACCCG)
Cytoskeleton TTACCCG 26 9.45 0.00 REB1 (YYACCCG)
General transcription activities TTACCCG 19 8.95 0.00 REB1 (YYACCCG)
Purine ribonucleotide metabolism TGACTC 31 6.90 0.00 GCN4 (TGANTN) regulates general control in response to

purine starvation (MIPS)
Amino acid transporters TSASTC 54 6.40 0.03 GCN4 (TGANTN) is a transcriptional activator of amino

acid biosynthetic genes (MIPS)
Drug transporters CSGN[9]CGS 40 9.24 0.00 Matches 4 GAL4 binding sites
Cell wall TCCGAA 33 7.51 0.00 Matches 5 GAL4 binding sites
Directional cell growth
(morphogenesis)

CRYN[6]CGA 44 6.06 0.05 Matches 5 TAF binding sites

Intracellular transport vesicles CGTN[7]GAY 40 6.25 0.00 Matches 11 BAF1 binding sites. Baf1 is a multifunctional
protein involved in transcriptional regulation of various genes (MIPS)

Extracellular/secretion proteins CCTAATT 12 7.32 0.05 Matches 3 MCM1 binding sites. Three (Mfa 1 and 2, HSP150)
of the ®ve genes that have this motif are known to be regulated
by MCM1 (SCPD)

Nitrogen and sulfur utilization GATAAG 52 9.58 0.00 GATA box (GATAAG). The four GATA-binding factors (Gtz3,
Dal80, Gln3, Gat1) regulate the expression of nitrogen catabolic
genes (MIPS)

Nitrogen and sulfur metabolism AAGATAAG 23 10.76 0.00 GATA box (GATAAG). The four GATA-binding factors (Gtz3,
Dal80, Gln3, Gat1) regulate the expression of nitrogen catabolic
genes (MIPS)

Other cation transporters AGAYAAG 32 7.66 0.00 GATA box (GATAAG)
Lipid and fatty-acid transport TCCGCGGR 12 18.19 0.00 PDR1/PDR3 (TCCGYGGA)
Homeostasis of metal ions TCCGYGGA 13 9.18 0.02 PDR1/PDR3 (TCCGYGGA) are implicated in transcription of two

of the four genes in this class that have the motif (46)
Transport mechanism CCGYGGA 24 8.48 0.00 PDR1/PDR3 (TCCGYGGA) are implicated in transcription of ®ve

of the nine genes in this class that have the motif (46)
C-compound and carbohydrate
transporters

TCCGYGS 26 8.39 0.00 PDR3 (TCCGYGGA) binds Hxt11

Cation transporters YGSACCC 32 9.16 0.00 AFT1 (TRCACCC) is involved in homeostasis of iron (MIPS)
Metabolism of energy reserves
(glycogen, trehalose)

CCCCTGA 13 10.20 0.00 STRE (CCCCT) is a stress response regulatory element. Three
(TPS1, GSY1, PGM2) of the 11 genes in this class that have
this motif are induced by stress

Proteolytic degradation GGTGGCAA 38 17.71 0.00 RPN4 (GGTGGCAAA)
Peroxisome TYGGRGT 30 7.36 0.00 ADR1 (TYGGRG) regulates peroxisomal genes (MIPS) (47)

The last column is the name of the known transcription factor binding site whose consensus sequence is similar to the found motif. The consensus sequence
was obtained from SCPD (16) for all except the following: the consensus for MET was obtained from van Helden et al. (17); the consensus for RPN4 from
Hughes et al. (11).
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in position in the promoter sequences. Figure 1 illustrates this
point. It shows a plot of the occurrences of the motif in the 45
promoters, the 3¢ end being on the right. We also plotted this
motif in promoter regions of orthologs of the 45 yeast genes in
other yeast species (Fig. 2). The orthologous genes considered
here belong to other yeast strains and the orthology informa-
tion was obtained from Paul Cliften (personal communica-
tion). We see that the motif occurs frequently and is conserved
in position in these orthologous promoters also, even though
the orthologous genes were identi®ed based on their protein
sequences. Moreover, a very similar motif GATGAGS is
found to be signi®cant in the related functional class `tRNA
transcription'. This motif occurs 45 times in 34 promoters of
the class, with a z-score of 9.11 (pmax < 0.01).

Another motif worth special mention is the 8mer
CGGAGWWA, which occurs in the functional class `C-
compound and carbohydrate transporters' that has 46 genes. It

occurs a total of 28 times in 16 different promoters of this
class, whose corresponding genes have a co-expression score
of 0.05. This motif is signi®cantly well conserved in its
location (Fig. 3), although not as strongly as the previous
motif. Included in the 16 promoters of the class that contain
the motif are nine of the glucose transporting HXT genes
(Hxt2, Hxt3, Hxt5, Hxt8, Hxt11, Hxt13, Hxt15, Hxt16 and
Hxt17). The regulation of these genes has been the subject of
detailed biological studies. One study by Theodoris and
Bisson (42) shows that `DNA sequence dependent suppressing
elements' (DDSEs) located in the promoters of HXT genes
affect glucose sensing, and the authors further hypothesize
that the DDSE region contains binding sites for the Rgt1p
transcriptional repressor/activator. Rgt1p is believed to bind to
promoters of Hxt2, Hxt3 and Hxt4. However, the Rgt1p
binding site they propose for the HXT genes is TTTCAC-
GGAAAATTATATTTTG, which does not match our motif

Table 4. Signi®cant novel motifs in classes from the MIPS functional catalog

Name Size Motif Ns z pmax

Amino acid transport 23 GCCGTRCS 13 17.70 0.00
GYCGCCGA 7 13.47 0.00
GAWAGCG 19 9.08 0.00

Amino acid degradation (catabolism) 35 CGGN[10]YCG 29 8.94 0.00
GACTSCGS 14 14.99 0.00

Regulation of nitrogen and sulfur utilization 29 CGGN[10]SGS 27 6.63 0.01
Purine ribonucleotide metabolism 45 GGCTAGGA 7 10.69 0.01
Deoxyribonucleotide metabolism 11 CGCN[8]GYG 17 8.87 0.00
Polynucleotide degradation 27 CTYATCGC 9 10.23 0.02
Nucleotide transport 14 CGCGSGC 10 13.11 0.00
Phosphate transport 10 CGGN[4]GSS 19 9.22 0.00
Regulation of lipid, fatty acid and isoprenoid metabolism 20 CGSN[6]CCS 23 6.83 0.00
Biosynthesis of vitamins, cofactors and prosthetic groups 63 CTGN[5]GAC 33 6.66 0.00
Glycolysis and gluconeogenesis 35 TASGTAW 46 8.52 0.00

CTCWSCCC 14 11.59 0.01
CGTSSGG 16 8.31 0.00

Tricarboxylic acid pathway citrate cycle, Krebs cycle, TCA cycle 25 CGGCGCCG 8 17.92 0.00
GCWN[5]RGC 54 6.92 0.00

Glyoxylate cycle 6 CCGN[5]SSG 18 11.66 0.00
Other energy generation activities 16 CGCACCGC 4 13.47 0.00
DNA restriction or modi®cation 32 CACN[11]WCC 38 7.33 0.00
rRNA transcription 109 CGATGAG 50 17.00 0.00
tRNA transcription 83 GATGAGS 45 9.11 0.00
Translation 64 AAWTTTTY 170 9.95 0.00
Cytoplasmic and nuclear degradation 99 TTGCCAC 51 13.08 0.00
Mitochondrial transport 80 SGCCSGG 23 7.59 0.00
G-protein-mediated signal transduction 12 CCCN[7]CGS 13 8.52 0.00
Homeostasis of anions 13 TCGN[7]SCR 28 7.62 0.01
Perception of nutrients and nutritional adaptation 25 CCSN[4]CCS 30 8.25 0.00
Cell death 10 GSCN[4]CCS 19 8.05 0.01
Nucleus 31 ATCACST 21 7.05 0.01

GCGGATCC 5 11.49 0.00
Cell wall 38 AGATCTCG 11 15.37 0.00

GGYCCST 19 7.30 0.00
Centrosome 31 TTWSGCG 27 6.86 0.03
Chromosome 44 ACTCGCCG 5 10.42 0.03
Regulator of G-protein signaling 13 CTACTCG 6 7.98 0.04
Target of regulation 13 CTACTCG 6 7.98 0.04
Cation transporters 62 CGCN[6]CGS 31 7.40 0.00
Ion transporters 79 CGSSCGC 27 8.20 0.00
C-compound and carbohydrate transporters 46 CGGAGWWA 28 14.17 0.00
Amino acid transporters 25 GATAGCGA 6 10.29 0.02
Allantoin and allantoate transporters 9 CGCNCGC 9 10.13 0.00
Drug transporters 35 CGACAGG 10 8.37 0.00

CGGCGCTA 6 11.62 0.01
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CGGAGWWA. A review by Ozcan and Johnston (43)
describes another mechanism that represses transcription of
some HXT genes in high glucose conditions through Mig1,
which is a transcription factor (repressor) known to bind to the
promoter of Hxt2 and Hxt4 genes. Again, we veri®ed that the
known binding sites of Mig1 (consensus CCCCRNN-
WWWWW) do not match the motif CGGAGWWA. Only
limited information is available on the expression of Hxt5 and
Hxt8 to Hxt17. In fact, it is not even certain if these are
involved in glucose transport; they could act as transporters
for other sugars. Hxt11 is bound by the transcription factor
PDR3, although the PDRE (the binding site for PDR3, with
consensus TCCGYGGA) does not match our motif
CGGAGWWA. The promoter of Hxt13 was obtained in a
screen for targets of the transcription factor Hap2, whose
binding sites are quite different from CGGAGWWA. Gal2, a
galactose permease that is >60% similar to the HXT proteins,
is also one of the 16 genes whose promoters contain the motif
under investigation. However, it is well established that Gal2
is regulated by the Gal4p transcription factor, which binds to
the element CGGNNNNNNNNNNNCCG. In summary, while
much is known about the transcriptional regulation of the
glucose transporting genes, none of the known mechanisms
seem to explain the presence of such a strong shared motif,
which is therefore worth investigating further.

The motif AAWTTTTY occurs 170 times in 52 of the 64
promoters of the class `translation', with a z-score of 9.95
(pmax < 0.01). These 52 genes are highly co-expressed, as
indicated by a co-expression score of 0.01. Another compel-
ling feature of the motif is its high conservation in location in
the promoters, as revealed by Figure 4. The class `amino acid
transport' has a signi®cant motif GCCGTRCS, which occurs
13 times in nine promoters of the class, with a very high
z-score of 17.70 (pmax < 0.01). Among the nine promoters that
have this motif are TAT1, DIP5, GAP1 and GNP1. SPS-
initiated signals are known to modulate the expression of these
four genes (44), and it would be interesting to ®nd out if the
discovered motif is related to this known regulation.

Phenotype catalog. The phenotype catalog from MIPS yielded
138 classes. All motifs reported by the motif-®nding steps

described above were examined. There were a total of 265
such motifs. Tables 5 and 6 present a selection from these
motifs. Once again, we ®nd among these motifs both known
binding sites (Table 5) and novel motifs (Table 6) that may be
good candidates for experimental veri®cation. The motifs in
Table 5 match the binding sites of the transcription factors
Reb1, Mcb, repressor of Car1, Cbf1, Rap1, Mata1 and Pho4. It
would be interesting to ®nd out if these transcription factors
are known to regulate some of the genes in the respective
phenotype classes.

We now discuss some of the most interesting motifs
reported in Table 6. The motif GTYGCCG occurs a total of
nine times (z-score 8.30, pmax 0.01) in seven of the 14
promoters of the class `sensitivity to immunosuppressants'.
The seven promoters belong to highly co-expressed genes, as
indicated by the low co-expression score of 0.015. The motif
does not match any known transcription factor binding site.

The motif CTSCCCSG, found in the class `mating
ef®ciency', deserves special mention. It occurs eight times
in seven different promoters of the class, with a z-score of 9.56
(pmax 0.01). An interesting feature of this motif is that its
instances occur, with up to one mismatch, overlapping Gal4p
binding sites in ®ve of the six genes regulated by this
transcription factor. Though it does not match the Gal4p
consensus CGGNNNNNNNNNNNCCG, this coincidence
seems worth investigating.

Another interesting motif is CCGCACRC, found in four of
the 21 promoters of the class `killer toxin resistance'. It occurs
a total of ®ve times in these promoters, with a z-score of 10.30
(pmax 0.04). The occurrences of the motif are conserved in
position in the four promoters, as Figure 5 reveals. Moreover,
the four corresponding genes are highly co-expressed, having
a co-expression score of 0.025.

Unclassi®ed proteins. The MIPS database also has a table of
230 ORFs with strong sequence similarity to known proteins.
YMF was run on sets of genes that have similarity to the same
protein or family of proteins, and in some cases signi®cant
motifs were reported. For instance, there are seven ORFs with
a strong similarity to members of the SRP1/TIP1 family. YMF
reported two strong motifs AGGCAY (pmax < 0.01) and

Figure 1. Occurrences of motif CGATGAG in 45 promoters of the MIPS
functional class `rRNA transcription'. Each horizontal line represents a
promoter, the right end being at the translation start site. Vertical bars
represent motif occurrences.

Figure 2. Occurrences of motif CGATGAG in orthologous promoters of
genes in the MIPS functional class `rRNA transcription'. The orthology
information was obtained from Paul Cliften (personal communication).
The sequences are plotted with their 3¢ ends on the left, contrary to the
convention followed in other similar plots in this paper.
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TCGTWYA (pmax < 0.01) in this set. Both these motifs were
found to be signi®cant when YMF was run on the eight
members of the SRP1/TIP1 family, thereby furthering

evidence for a relation between the seven unclassi®ed ORFs
and the SRP1/TIP1 family.

Further research

In Tables 3 and 5, it would be interesting to pursue
connections (if not already described in these tables) between
the known transcription factor listed in the last column and the
gene family in which it was found, to determine whether the
transcription factor plays a role in the regulation of genes in
this family.

Even more interesting would be to pursue the novel motifs
listed in Tables 2, 4 and 6 to see whether they lead to
transcription factors of heretofore unknown function.

Finally, the motif model described in Materials and
Methods was developed from a study of S.cerevisiae tran-
scription factor binding sites. It would be very interesting to
understand whether this model is also suitable for the
discovery of transcription factor binding sites in other
organisms and, if not, how it should be modi®ed. It is
relatively easy to extend our algorithm to handle motif models
where a motif corresponds to a ®xed set of strings over the
alphabet {A,C,G,T,N}. The mismatch model, where the motif
is a string over this alphabet, and its occurrences may have
some ®xed number of mismatches from the consensus,
belongs to this category of models.
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Table 5. Signi®cant motifs in classes from the MIPS phenotype catalog

Name Motif Ns z pmax Comments

G1 arrest ATTACCC 13 7.33 0.02 REB1 (YYACCCG)
Mating ef®ciency TTACCCG 12 8.81 0.00 REB1 (YYACCCG)
Bud localization TTACCCG 12 8.15 0.00 REB1 (YYACCCG)
Osmotic sensitivity TTACCCG 13 7.79 0.00 REB1 (YYACCCG)
Cytoskeleton mutants TTACCCG 27 9.53 0.00 REB1 (YYACCCG)
Secretory mutants TTACCCG 20 10.21 0.00 REB1 (YYACCCG)
Carbohydrate and lipid biosynthesis defects CGCGWCG 11 7.19 0.00 MCBF (WCGCGW)
DNA repair mutants ACGCGW 83 10.98 0.00 MCBF (WCGCGW) is involved in DNA synthesis (45)
DNA replication mutants ACGCGW 40 9.13 0.00 MCBF (WCGCGW) binds to MCB in DNA replication

genes (TRANSFAC)
Respiratory de®ciency GSCGCCGA 18 11.46 0.00 Repressor of CAR1 (AGCCGCCR)
Vanadate resistance GYCGSCG 7 9.53 0.04 Repressor of CAR1 (AGCCGCCR)
Recombination mutants TAGCCGCC 8 11.02 0.00 Repressor of CAR1 (AGCCGCCR)
Divalent cations and heavy metals GYSGCCG 27 6.51 0.05 Repressor of CAR1 (AGCCGCCR)
Methionine auxotrophy TCACGTGC 5 17.73 0.00 CBF1 (TCACGTG) null mutant is methionine auxotroph (MIPS)
Elongated cell and bud morphologies TCCGTAC 9 6.69 0.05 Matches 3 RAP1 binding sites

CAANNNCAR 73 6.01 0.04 Matches 3 Mata-1 binding sites
Divalent cations and heavy metals CACGTGS 27 8.00 0.00 PHO4 (CACGTK)

The last column is the name of the known transcription factor binding site whose consensus sequence is similar to the found motif. The consensus sequence
was obtained from SCPD (16).

Figure 3. Occurrences of motif CGGAGWWA in 16 promoters of the
MIPS functional class `C-compound and carbohydrate transporters'.

Figure 4. Occurrences of motif AAWTTTTY in 52 promoters of the MIPS
functional class `translation'.
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