
Bulletin ofMafhematicalBiology Vol. 46, No. 4,  pp. 515-527, 1984. 
Printed in Great Britain 

0092-8240/84$3.00 + 0.00 
Pergamon Press Ltd. 

0 1984 Society for Mathematical Biology 

PATTERN RECOGNITION IN SEVERAL 
SEQUENCES: CONSENSUS AND ALIGNMENT 

M. S. W A T E R M A N *  and R. A R R A T I A ~  
Departments of Mathematics*t and of Molecular Biology,* 
University of Southern California, 
Los Angeles, CA 90089, U.S.A. 

D.J .GALAs$  
Department of Molecular Biology, 
University of Southern California, 
Los Angeles, CA 90089, U.S.A. 

The comparison of several sequences is central to many problems of molecular biology. 
Finding consensus patterns that define genetic control regions or that determine structu- 
ral or functional themes are examples of these problems. Previously proposed methods, 
such as dynamic programming, are not adequate for solving problems of realistic size. 
This paper gives a new and practical solution for finding unknown patterns that occur 
imperfectly above a preset frequency. Algorithms for finding the patterns are given as 

5 well as estimates of statistical significance. 

1. Introduction. In the mathematical analysis of macromolecular sequences 

powerful dynamic programming methods have been developed for the 
optimal alignment of two sequences, for the best fit of one sequence ‘into’ 
another and for determining the best matching segments of two sequences. 
Various methods for more rapid comparison of sequences have also been 
developed that are particularly useful for screening data bases. The subject 
of sequence comparison is reviewed elsewhere in this issue (Waterman, 1984). 

The methods currently available for comparison of two sequences are not 
as useful when applied to several sequences. Dynamic programming methods, 
for example, take time and storage 0 [ ( 2 n ) ‘ ]  to compare r sequences of 
length n. No previously known methods are adequate for these problems. 
In this paper we address the problem of comparison of several sequences, 
which is of considerable biological interest, and explicitly approximate the 
probability that a pattern is held in common by at least a preset percentage 
of the sequences. We introduce practical techniques that solve the problem 
of finding these ‘consensus’ patterns for a set of sequences. 

I one of the most developed areas is the comparison of sequences. Varied and 
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experimental data. Queen et al. (1982) propose a method closely related to 
ours although their data analysis differs in critical ways which limit the 
utility of their procedure. In addition, Dumas and Ninio (1982) treat a 
sequence as a string of overlapping n-mers and Marliere (1982) analyzes 
tRNA sequences by computing a score for each overlapping n-mer. Our 
algorithms make use of similar ideas. 

2. Basic Algorithm. 
to  the three problems described in the Introduction. 

4 

In this section, an algorithm is presented which applies 

The data are a set of r sequences 

X =  

where xii are members of a finite alphabet, such as {A, C, G, T}. 
The analysis is based on the occurrence of k letter words, which may be 

ordered lexicographically (AA . . . AA, AA . . . AT,. . . , TT . . . TT) and put 
into correspondence with the integers 0, 1, . . . , 4k - 1. Since we are 
concerned with the occurrence of similar patterns, we must define sets of 
similar words which we will call neighborhoods. Neighborhoods of words are 
defined by functions, f ,  mapping a k-letter word into a set of k-letter words. 
For example, if w = AT and f(w) = {w' : w' is one mismatch from w }  then 
f (w)  = f(AT) = {CT, GT, TT, AA, AC, AG}. A neighborhood is determined 
from a list of such functions. 

Basic to our analysis is an enumeration of the words and their neighbors. 
For a stringy = ylyz . . . yL, of length L ,  define 

qwd = I{m : w Efd(YmYm+l - .  .Ym+k-l), 1 b m  G L  + 1 - k } l  

where (BI is the number of elements in the set B .  In other words, qwd is the 
number of times word w is an fd neighbour of some k-letter words in 
Y 1 -  * . Y L .  

For example, let k = 2 and y = ACTAAA. Consider two neighborhood 
functions f o ( * ) ,  the exact match function, and fl(*),  the single-mismatch 
function. Then the matrix, Q, of neighbor occurrences [ Q = (qwd)] is 
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AA 
AC 
AG 
AT 
CA 
cc 
CG 
CT 

= GA 
GC 
GG 
GT 
TA 
TC 
TG 
TT 

fo 
2 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 

fi 
2 
2 
3 
4 
4 
2 
1 
0 
3 
1 
0 
1 
2 
2 
1 
2 

CA, for example, does not occur exactly in y ,  but y does have four words 
that are one mismatch from CA. 

Next we compute Q = ( 4 ~ )  where cjW is 1 if d = min{l : qwl # 0}, and 4- 
is 0 otherwise. For the above example, 

Q =  

1 0 
1 0 
0 1 
0 1 
0 1 
0 1 
0 1 
1 0 
0 1 
0 1 
0 0 
0 1 
1 0 
0 1 
0 1 
0 1 - 

The idea is to count only the best occurrence of a word w in the stringy. 
The search of the sequence set, X, will proceed by performing a search 

for the most frequently occurring word in the block from column j to 
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column j + W - 1. The window width, W ,  is a parameter set by the user. 
Too broad a search will give insignificant results, too narrow a search will 
usually not find a desired pattern. In Section 5 the statistical significance is 
assessed in detail. The sequences searched are 

X l , j X l , j + l  - . * X I , ~ + W - I  

X 2 , j  X 2 , j + 1  - . . X S , ~ + W - I  

. . .  
X r , j X r , / + l  Xr,j i-W-1 . 

For each line i, 1 < i < r ,  the Q = Q(i) matrix above is calculated and a 
summation matrix 

is found. V = ( v ~ )  has the interpretation that v, is the number of lines 
for which the best occurrence of word w is as a d th neighbor. 

Different occurrence scores can be calculated from V. First, 

is the number of lines in which any neighbor of word w occurs. A score 
weighted for the distance between the word and its neighbor is more appro- 
priate. The general form is 

sw = ) h V w d .  
d > l  

A winning word w ,  the ‘most common’ pattern, satisfies 

max,l(s,#) = s, Gs. 

The scoring used in the programs discussed here is 
Number of letters in common between w and members of fd(w). 

k 
Ad = 

In particular, with this weighting 
I 

h e x a c t  = 1 
and 

d 
k Ad mismatches = - - *  

The algorithm begins with a set 6, fi, . . . of neighborhood functions and a 
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window width W .  The winning word score is computed for j = 1, 2, . . .. 
Estimates of statistical significance can be obtained (see Section 5 below) 
from the sequence probability distributions and the neighbors fo, f;, . . . and 
used to set W .  For the problems of finding unknown and known patterns, 
specific algorithms are presented in Sections 3 and 4. 

3. Search for  Unknown Patterns. The assumption here is that the ‘consensus’ 
pattern among the set of sequences is unknown. This is the problem of most 
interest and the one which has attracted much attention from biologists 
because of the need to find significant sequence patterns that define specific 
functions among the rapidly expanding sequence data. The ‘Pribnow box’ 
from bacterial promoters or the ribosome binding site in bacteria, the 
‘Shine-Dalgarno sequence’, are examples of such patterns that define part 
of the function of transcription initiation (Hawley and McClure, 1983) and 
translation initiation (Steitz and Jakes, 1975) respectively. In the first 
example, the pattern of this ‘box’ only becomes well-defined for a relatively 
large set of promoter sequences. That is to say, the ‘shadow’ of the con- 
sensus pattern is not very precise among the sequences. The approach to 
finding the pattern that casts this shadow that prescribes exhaustively 
comparing all subsequences of the set, requires an enormous number of 
operations even for short sequences and points to the need for efficient 
algorithms for pattern recognition of this kind. If there were 100 sequences 
and only two positions for each sequence, there would be 2loo GZ 1.26 X 1030 
possible overall configurations of the 100 sequences. Using this method 
to find patterns thus presents a hopeless task. The algorithm we present, on 
the other hand, here takes time approximately proportional to 

The search begins, as in Section 2, with a set of neighbors fo, f;, . . . and a 
window width W .  The scores of all words are calculated at each window 
position and the best one determined. If desired, the sequences can be 
‘aligned’ on a statistically significant word or pattern: a ‘column’ can be 
formed. Forming a column in this manner, on a word such as TATAAT in 
the bacterial promoters, may allow a second pattern, such as the TTGACA 
for the upstream, ‘-35’, box, to be located much more easily. 

In a test of these concepts on 59 sequences of bacterial promoter regions 
approximately 60 bases long, k = 6 was used. With neighborhood functions: 
fo = exact, fi = 1 mismatch, f? = 2 mismatches, window width W = 12 was 
used. For neighborhood functions: = exact, fi = 1 mismatch, fi = 2 mis- 
matches, fJ = 3 mismatches, W = 9 was used. We are also able to include 
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insertions and deletions, either separately or along with mismatches. For 
instance, we may use 1 mismatch and 1 insertion, or 1 mismatch and 
1 deletion. With the above parameters the programmed algorithm easily 
found both the - 10 consensus and the -35 consensus. 

4. Search for  Known Patterns. In this section a pattern of interest 
y = yly2 . . . y ,  is assumed to be known. The Pribnow box,y = TATAAT, 
for example, is such a pattern in the example of bacterial promoters (Hawley 
and McClure, 1983). Similarly, a particular complete promoter sequence 
of length 60 might be chosen as a known pattern. In any case the algorithm 
outlined below would fiid the best ‘shadow’ of the patterny in the set X of 
sequences. This problem is clearly a special case of the pattern recognition 
problem described in the previous section. 

First choose a word w of length k from y = y1 . . . y,. In the Pribnow 
box case this might be TATAAT with k = 6 but it also might be a k letter 
subword of a full (longer) sequence. Within a window of width W, the 
calculations of Section 2 are performed where 

.!, 

qWl = number of exact occurrences of w in row i 

~ W Z  = number of one mismatch occurrences of w in row i 

... . 
Only one line of Q, the wth row, is used in these calculations since we 
assume prior knowledge of the desired patterns. 

5. Estimates o f  Statistical Significance. For ease of analysis, we analyze 
the score equal to the number of lines in which any neighbor occurs. (That 
is, hd = 1.0.) 

Assume that, independently in every position on every line, each of the 
four letters, A, C, G, T appears with probability 1/4. For any word z of 
length k, the probability that the letters in k given positions spell z exactly 
is 4-k. Let F = &lj,,l be the total number of k-letter neighbors of a given 
word w. The probability that k random letters form a neighbor of w is 4-kF 

In Section 5.1 we present the essentials of our analysis and give some 
numerical examples. Then, in Section 5.2, more details are presented. 

5.1 Survey o f  the analysis. Assume that w is a given pattern of length k, 
having F neighbors of length k. We use 

? 

(Y = ( W  - k + 1)(F)4-k 

to approximate the probability that some neighbor of w occurs, on a 
given line, with a given position of the window of width W. Thus, if the 
data were random, for each word and window position j ,  one would expect 
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approximate matches to w on about ar of r lines. A fraction /3 > a is extremely 
unlikely. 

Suppose we are looking for a pattern common to some preset fraction 
/3 > a of the r sequences. For word w and window position j ,  the probability 
that at least or lines yield approximate matches to w can be estimated as 

i 

exp[-rH@, a)], where H(p ,  a) = plog 
1 -a 

is the entropy of /3 relative to  a. Now there are n choices for the location j of 
the window, and, if the pattern w is unknown, there are 4k choices for the 
word w. Then our estimates of significance level p are 

known pattern: 

unknown pattern: p = n4kexp[--rH(@, a)]. 

Thus p is an upper bound, for random data, on the probability that in some 
window position, an approximate match occurs on a fraction greater than or 
equal to of the r lines. If these estimates exceed 1, we use 1 instead. 

Two examples are presented in Table 1 for patterns of length k = 6, 
with r = 59 sequences of length n = 60. For the first example, the neighbor- 
hood is 0, 1 or 2 mismatches, and F = 1 + 18 + 135 = 154. The second 
example has a neighborhood of 0, 1, 2 or 3 mismatches, and F = 1 + 18 + 
135 + 540 = 694. 

p = nexp[-rH(P, a)] 

TABLE I 
Estimates of Statistical Significance for Patterns of Length k = 6 in 

r = 59 Sequences with 60 Bases 

Known Unknown 
pattern pattern 

F W  a P H(P,a )  P P e-rH 
_ _ _ _ _ _ _ _ ~ ~  _________ ~~ 

154 12 0.263 0.75 0.515 6.3 X 3.8X 1.5 X lo-' 
154 14 0.338 0.75 0.354 8.7 X lo-'' 5.2X lo-' 2.1 X lo4 
154 16 0.414 0.75 0.233 1.1 X 6.3 X lo-' 2.6X lo-' 

694 7 0.339 0.75 0.353 9.2X lo-'' 5.5 X lo-' 2.3 X lo4 
694 8 0.508 0.75 0.123 7.2X 4.3 X 1 .o 

5.2 Details of the analysis. Within a window of length W, there are 
I = W - k + 1 places for a block of k consecutive letters. For each of these 
I choices, consider the event, of probability a = 4-kF, that some neighbor 
of word w occurs at that position. Regardless of the dependence of these 
1 events, a1 is an upper bound on the probability of their union. We will use 
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a1 = 4-kF( W - k + 1 ) as our estimate of the probability a that some neighbor 
of w occurs elsewhere in the window. 

If the 1 events were independent, the probability of their union is 
1 - (1 - a)', which is closely approximated by a1 whenever a1 < 1. An 
exact bound is (1 - l/e)min(al, 1) < 1 - (1 - a)' < min(a1, l ) ,  for 
1 = 1, 2, . . . and any 0 < a < 1. The 1 events here are dependent, in a 

varies with the word w .  For example, the events for two adjacent positions, 
{x1x2 . . . x k  is a neighbor of w }  and {x2x3 . . . X k + l  is a neighbour of w } ,  
are positively correlated if w = AAAAAA, and negatively correlated if 
w = ACGTAC, using the neighborhoods of one or two mismatches. For 
further discussion of this dependence see Waterman (1 983) and Breen et al. 
( 1985). 

Consider a fixed window position j .  Independently, on each of r lines, 
there is the event of probability a that some neighbor of w occurs. The 
probability that exactly m of these events takes place is 

_I complex way that we cannot analyze, and furthermore, the dependence 

For a prescribed threshold p between 0 and 1, the probability that 
some neighbor of w occurs, within the window, on at least pr of the r 
lines. is 

. 

As long as p > a and r is large, a good approximation for this sum is the large 
deviation estimate, P (at least pr successes in r independent trials with indi- 
vidual success probability a < p) e e-rH(Pya). Here H(p ,  a) is the relative 

entropy, H(p, a) = plog + (1 -0)log (' l--a -'). Note that when p = 1, 

the probability of finding a neighbor of w on all r lines is a', and H ( p ,  a) 
reduces to -log a, so that the approximation is exact: for p = 1 ,  e-rH(flia) = 

n 
possible window positions, the event that some neighbor of w occurs within 
that window on at least pr of the r lines is approximately e-rH(Ppa). The 
estimate of significance ne-rH(P9a) is an upper bound on the probability that, 
for a given word w ,  some window position reveals an approximate match 
to w on at least fraction p of the lines. 

The bound above can be used to choose a window size W. Pick a signifi- 
cance level p ,  e.g. 0.01 or 0.001. To get ne-rH(P9a) < p  we need 

or. log a = 

Finally, consider the shifting window position. At each n - W + 1 

3 
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H(P, a)  d l o g  r (;) ; 

so we let 

E =-log(;). 1 
r 

11 r 

For P = 1 , this says -log a 2 E = Llog(;), i.e. a < e-€ = (:) . Now 
r 

c ~ < 4 - ~ F ( W - k +  1)so  we solve for W: 

(:)'Ir = 4-kF(W - k + l ) ,  

w = - ( 4 k / F ) +  (k- 1). (:)'" 
For P < 1 , we need approximations to solve H(P,  a )  = E .  Here E is small, 

so a will be slightly less than P ;  we let a = P(l - 6). Using log(1 + x) = 

x2 x3 
x - - + - .  . . , 

2 3  

Thus to solve H(P, a) = E , we take a = (1 - 6)P with 

6. Aligning Sequences. Obviously most of the sequences must already be 
approximately aligned. This may be done by finding long matches in all 
sequences, or by using prior knowledge of biological functions such as the 
beginning of coding regions. 
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The algorithm and statistical significance estimates have already been 
described. The approximate alignments can be improved, although not 
drastically altered. The algorithm begins at some aligned positions and 
searches until statistically significant matches are found. 

Alignments on features other than matches are possible. For example, 
the Noller-Woese (1 98 1) method utilizes both matches and helical regions to 
perform their phylogenetic analysis of ribosomal RNA secondary structure. 
In Noller, Waterman and Woese (in preparation) these methods are given a 
rigorous basis. The double-stranded regions are found by positioning a window 
and then searching by moving another window across the approximately 
aligned sequences until a region with significant base pairing is located. 

7. Application to Biological Problems. Since DNA and protein sequence 
information has been available, various short patterns have been identified 
as having particular functional significance. In several presumptive regulatory 
DNA sequences, for example, a candidate ‘consensus’ sequence, specifying 
a particular biological function, has been identified by simple inspection of 
several examples of DNA sequences known to determine such a function. 
The ‘Pribnow box’ of bacterial promoter sequences (Pribnow, 1975) and the 
‘Goldberg-Hogness’ box of eukaryotic polymerase I1 promoter sequences 
are examples of such feature extraction by inspection (Schaller et al., 
1975; Goldberg, 1979; Breathnoch and Chambon, 1981). The difficulties 
with this process are evident: there is no unambiguous definition of a ‘con- 
sensus’ sequence; the subjective nature of the process introduces arbitrary, 
unstated choices (such as alignment of the “boxes”); the features that are 
evident from the comparison of single letters may not be the most impor- 
tant features of the functional pattern and it is not clear to what extent 
the observed features are statistically significant. There are other potential 
problems, some of which have been addressed by previous attempts at 
pattern recognition, as briefly discussed in the introduction. The general 
nature of these problems has been discussed previously (Sadler et al., 1983; 
Smith et al., 1981). 

The method presented here overcomes many of the difficulties referred 
to above by providing: a clear and explicit definition of a ‘consensus’ 
pattern; an algorithm for finding such patterns among many sequences and 
an analysis of the statistical significance of these patterns. Furthermore, the 
present method provides a general tool that can be used to detect more 
subtle patterns. We need not confine our attention to the standard alphabet 
{A, C, G, T} and single positions in the sequence. Since the method is equally 
applicable to any set of strings of symbols, we may map sequences in the 
standard alphabet into sequences in a sub-alphabet, or into an alphabet (or 
sub-alphabet) of dinucleotides, trinucleotides, etc. and search for patterns 

r 
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in these non-standard alphabets. It has been suggested, for example, that 
important features of the DNA-protein recognition are in the array of func- 
tional groups in the grooves of B-form DNA (see Matthews et al., 1982, for 
example) or in the set of sequence-specific ‘twist’ and ‘roll’ angles, etc. 
that modify the relatively uniform structure of the DNA molecule (Dickerson, 
1983, Dickerson et al., 1982; Anderson et al., 1982). These features would 
be manifest in patterns in one of the sub-alphabet sequences mentioned 
above. 

Regulatory signals in DNA sequences are particularly amenable to  analysis 
by the proposed method. Initially, we have given particular attention to the 
bacterial promoter sequences, since they represent an extensive and well- 
studied set of sequences with known function (Hawley and McClure, 1983). 
The important patterns (in the standard alphabet) are reasonably well- 
determined, so this set is an ideal test case. The known patterns in the -10 
and -35 regions are easily found by our programs. The detailed results of 
this study will be reported elsewhere. Among the functional sequences of 
particular interest for further study are: the eukaryotic promoter sequence 
for polymerases I, I1 and 111, the mRNA capping site, the poly-A addition 
site, enhancer sequences, the splicing sites for pol11 transcripts, ribosome 
binding sites in prokaryotes and eukaryotes, the binding sites for various 
proteins (CRP and various repressor proteins), hormone receptor sites, 
common features in sequences surrounding mutational ‘hotspots’ and several 
others, To be useful the present method only requires that we have several 
examples of sequences with closely similar functions. It is worth noting here 
that many sets of functional sequences exhibit a wide range of functional 
activities among the members of the set (promoters of various strengths, 
for example), and that the present method is easily modifiable to take this 
into account. It is simply a matter of using weights, indicating the activi- 
ties, in the algorithm to extract the patterns from various sequences. In this 
manner a weighted, ‘consensus’ promoter, for example, can be specified. 
In general, the more that is known about the function of a sequence the 
more information can be extracted. 
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