Vol. 18 no. 1 2002
Pages 354-363

4

sequences

Finding composite regulatory patterns in DNA

Eleazar Eskin! and Pavel A. Pevzner?

"Department of Computer Science, Columbia University, New York, 10027, NY and

2Department of Computer Science and Engineering, University of California at San
Diego, La Jolla, 92093-0114, CA

Received on January 22, 2002; revised and accepted on April 1, 2002

ABSTRACT

Pattern discovery in unaligned DNA sequences is
a fundamental problem in computational biology with
important applications in finding regulatory signals. Cur-
rent approaches to pattern discovery focus on monad
patterns that correspond to relatively short contiguous
strings. However, many of the actual regulatory signals
are composite patterns that are groups of monad patterns
that occur near each other. A difficulty in discovering
composite patterns is that one or both of the component
monad patterns in the group may be ‘too weak’. Since the
traditional monad-based motif finding algorithms usually
output one (or a few) high scoring patterns, they often
fail to find composite regulatory signals consisting of
weak monad parts. In this paper, we present a MITRA
(Mismatch TRee Algorithm) approach for discovering
composite signals. We demonstrate that MITRA performs
well for both monad and composite patterns by presenting
experiments over biological and synthetic data.
Availability: MITRA is available at
http://www.cs.columbia.edu/compbio/mitra/
Contact: eeskin@cs.columbia.edu
Keywords: regulatory motif finding; pattern finding; dyad
motifs.

INTRODUCTION

Pattern discovery in unaligned DNA sequences is a
fundamental problem in computational biology, with im-
portant applications in finding regulatory signals. Current
approaches to pattern discovery focus on monad patterns
that correspond to relatively short contiguous strings that
appear (with some mismatches) surprisingly many times
(in a statistically significant way). However, many of
the actual regulatory signals are composite patterns that
are groups of monad patterns that occur relatively near
each other (GuhaThakurta and Stormo, 2001; Gelfand et
al., 2000; van Helden et al., 2000). These patterns are
often associated with co-regulated genes that share two
or more transcription factors. A difficulty in discovering

composite signals is that one of the component monad
signals in the groups may be ‘too weak, making the
composite signal difficult to find using the traditional
monad-based approaches. For example, GuhaThakurta
and Stormo (2001), described a set of yeast S. cerevisiae
genes that are regulated by two transcription factors with
experimentally verified sites, URS1 and UASH, that occur
relatively near each other. Although URSI1 is strongly
conserved and easily found with traditional monad-based
approaches, UASH is too weak to be discovered with
these approaches.

An example of a composite pattern is a dyad signal,
which is a pair of monad patterns that appear a fixed
(or almost fixed) distance apart. A possible approach to
detecting composite and dyad patterns is to find each part
(monad) of the pattern separately and then reconstruct
the composite pattern. Since the traditional monad-based
motif-finding algorithms usually output one (or a few)
high scoring pattern, they often fail to find composite
regulatory signals consisting of weak monad parts. This
is because one of the parts may not be significant on its
own. A better approach would be to detect both parts of
a composite pattern at the same time. In many cases, the
composite pattern is strong enough to be detected even in
the case its monad parts are too weak to be detected on
their own.

In this paper, we present a composite pattern discovery
algorithm consisting of two steps. We first cast the com-
posite pattern discovery problem as a larger monad dis-
covery problem by preprocessing the sample. Preprocess-
ing creates a set of ‘virtual’ monads (concatenations of the
monad parts of the composite signal) which represent the
possible instances of the composite signals. The second
step of the algorithm applies an exhaustive monad discov-
ery algorithm to the ‘virtual’ monad problem. The ‘virtual’
monad problem is harder than traditional monad discovery
problems because the monads are typically longer and the
samples are larger. We present a monad discovery algo-
rithm, MITRA (MIsmatch TRee Algorithm) that efficiently
performs exhaustive search over patterns.

354

© Oxford University Press 2002

Finding composite regulatory patterns in DNA sequences

MITRA uses pairwise similarity information which is
the basis of the WINNOWER algorithm by Pevzner and
Sze (2000). and takes advantage of a new insight into
pruning the pattern space that allows for more efficient use
of pairwise similarity than in the WINNOWER algorithm.
MITRA is able to discover composite motifs of combined
length over 30 bp unlike previous exhaustive pattern
discovery methods.

Four related works approach the problem of identi-
fying composite patterns by attempting to identify the
component monad signals at the same time. The studies
of composite patterns were pioneered by Marsan and
Sagot (2000). MITRA borrows some insights from their
work and further develops some ideas used in their
suffix tree approach. The approaches of GuhaThakurta
and Stormo (2001) and Liu et al. (2001) use profile-
based approaches. While being very useful in practice,
profile-based approaches do not guarantee convergence
to the best dyad signal and may fail when detecting weak
dyad signals. The forth related work is the RSA-dyad
algorithm by van Helden et al. (2000), which compares
observed frequencies of pairs of spaced trinucleotides to
the expected frequencies of the pairs. Since MITRA is
designed to discover patterns that occur with mismatches,
it can potentially detect weaker dyads.

We present several tests over biological and synthetic
data and demonstrate that MITRA performs well for both
monad and composite patterns. In particular, we show that
our algorithm automatically recovers the dyad signal in P.
horikoshii from Gelfand et al. (2000) (that the RSA-dyad
algorithm failed to find), as well as the composite pattern
in S. cerevisiae that can not be discovered by traditional
monad discovery methods (GuhaThakurta and Stormo,
2001). In a separate paper MITRA has been applied to au-
tomatic discovery of composite regulatory signals in com-
pletely sequenced bacterial genomes (Eskin et al., 2002).

MONAD PATTERN DISCOVERY

DNA sequences are subjects to mutations and as a result
regulatory signals typically occur with some mismatches
from the ‘canonical’ patterns. We can represent the
canonical pattern as an /mer (a continuous string of length
[). In the case when the biological signal is represented
by a profile we use the most frequent nucleotide in every
position of the profile to form the canonical pattern.
Although this is a crude approximation of the profile we
explain, below that our algorithm is able to recover the
profile using the canonical pattern as a ‘seed’. We use
the term pattern or signal to refer to the canonical /mer.
We define the term (I, d)-neighbourhood of an Imer P to
represent all possible /mers with up to d mismatches as
compared to P. For the alphabet of nucleotides the size of
the (I, d)-neighbourhood for any /mer is Z?:o (5)3’ We
use the term instances of the pattern P to refer to /mers

from the (/, d)-neighbourhood of P that are present in the
sample (i.e., /mer in the sample with up to d mismatches
from P). Given a set of patterns P we call an /mer valid if
it is an instance of a pattern P € P.

We define the pattern discovery problem as follows.
Given a sequence S, we want to find all /mers that occur
with up to d mismatches at least k times in the sample.
Such Imers are called (I, d) — k patterns. A variant of the
problem assumes that the sample S is split into several
sequences and we want to find all /mers that occur with up
to d mismatches in at least k sequences in the sample.

There have been many approaches presented to the
discovery of monad signals. Among the best performing
are MEME (Bailey and Elkan, 1995), CONSENSUS
(Hertz and Stormo, 1999), Gibbs sampler (Lawrence et
al., 1993; Neuwald et al., 1995; Hughes et al., 2000),
random projections (Buhler and Tompa, 2001), com-
binatorial based approaches (Pevzner and Sze, 2000),
and MULTIPROFILER (Keich and Pevzner, 2002a).
All these approaches focus on discovering the highest
scoring signals and may not be applicable in the case
where each of the pair of monad signals is not statistically
significant on its own. Moreover, the existing software
tools to pattern discovery involve some heuristics and/or
stochastic optimization procedures and do not necessarily
guarantee to find all best-scoring monad signals.

In order to obtain a list of candidate monads, one can
apply the classical pattern-based approaches such as the
Pattern Driven Approach (PDA) or Sample Driven Ap-
proach (SDA). The PDA (see Pevzner (2000)) examines
all 4’ patterns of fixed length / in lexical order, compares
each pattern to every /mer in the sample, and returns all
(I, d) — k patterns. To bypass the problem of excessive
time requirements in PDA, Waterman et al. (1984) and
Galas et al. (1985) suggested an algorithm that signifi-
cantly reduces the time requirements of the pattern-driven
approach. They noticed that most of 4’ patterns examined
in the PDA are not worth examining since neither these
patterns nor their neighbours appear in the sample. There-
fore, the time spent examining these patterns in the PDA is
wasted and a significant speed up can be achieved by elim-
inating these patterns from the search. Based on this obser-
vation they designed an algorithm which we call the Sam-
ple Driven Approach (SDA) that only explores the /mers
appearing in the sample and their neighbours.

The SDA first initializes a table of size 4/. Each entry
of the table corresponds to a pattern. For each /mer in
the sample, SDA generates the (I, d)-neighbourhood of
the /mer. Each table entry corresponding to an element
of the neighbourhood is incremented by a certain amount.
After all of the /mers in the sample are processed, the table
contains a score reflecting the significance of the pattern.
SDA returns all patterns whose table entries have scores
that exceed the threshold.

S$355

E.Eskin and P.A.Pevzner

The SDA approach is much faster than the pattern-
driven approach but it requires a large 4/ table. As a
result, the SDA was not practical for long patterns in
mid 1980s. Moreover, until recently, SDA was not in the
mainstream of pattern discovery algorithms and did not
result in a practical software tool. Sagot (1998) and Pavesi
et al. (2001) resurrected the Waterman et al. (1984) idea
with a new approach that eliminates its excessive memory
requirements. At the same time, with the gigabytes of
RAM memory routinely available today, the practical
values of / have significantly increased as compared to
1980s even without a memory-efficient algorithm.

The SDA approach explores the space of all neighbours
of Imers from the sample in a consecutive fashion, i.e.,
at the first step it explores all neighbours of the first
Imer from the sample, at the second step it explores all
neighbours of the second /mer, etc. If an /mer P belongs
to the neighbourhoods of the /mers appearing at positions
i1,...,Ir in the sample then the information about P is
collected at iterations iy, ..., ir. Since information about
P is collected at k different iterations, the Waterman et
al. (1984) approach updates information about P k times
during the course of the algorithm. As a result a memory
slot for P is occupied during the entire course of the
algorithm even if P is not an ‘interesting’ (i.e., not a
frequent) /mer. Since most of /mers explored by SDA are
not interesting the information about them is useless and
is later forgotten thus wasting the memory slots for such
Imers. A better solution would be to collect information
about all instances of a pattern P at the same time. This
removes the need to keep the information about a pattern
in memory but requires a new approach to navigate the
space of all Imers. MITRA (MIsmatch TRee Algorithm)
approach runs much faster than PDA and SDA and uses
only a fraction of the memory of SDA.

The pattern-finding algorithms (like PDA and MITRA)
are often contrasted against the profile-based approaches
(like Gibbs sampler) for motif-finding and there is a
point of view that the profile-based technique are more
biologically relevant for finding motifs in biological
samples (Berg and von Hippel, 1998). This is probably
the reason why the Waterman et al. (1984) algorithm was
not popular in the past decade. Sagot and colleagues were
the first to rebut this opinion and to develop an efficient
version of the Waterman et al. (1984) algorithm that was
successfully applied to analyse difficult biological samples
(Sagot, 1998; Marsan and Sagot, 2000; Vanet et al.,
1999). In fact, there are more similarities than differences
between the pattern-based and profile-based approaches.
The pattern-driven approaches, similarly to the profile
approaches, generate the profiles (as a consensus of found
instances of a pattern) but they explore the space of
possible motifs in a different and often more efficient
way than the stochastic optimization algorithms. Every

profile of length / corresponds to a pattern of length
[formed by the most frequent nucleotides in every
position of the profile. For most biological samples,
the search with this consensus pattern as a seed would
return the correct motif and would reconstruct the original
profile with variable frequencies in different positions. It
indicates that the pattern-driven approaches are at least as
good as the profile-based approaches for many biological
samples (Sze et al., 2002). On the other hand, Pevzner
and Sze (2000), Buhler and Tompa (2001), and Keich
and Pevzner (2002a) demonstrated that the pattern-driven
approaches perform better than the profile-based methods
on simulated samples with implanted patterns. Of course,
the ‘pattern-implantation’ model is somehow limited and
it remains to be seen whether the pattern-based algorithms
deteriorate for the ‘profile-implantation’ model. However,
today there is little evidence that the profile-based methods
perform any better than the pattern-based methods on
either biological or simulated samples.

MISMATCH TREE ALGORITHM

MITRA uses a mismatch tree data structure to split the
space of all possible patterns into disjoint subspaces that
start with a given prefix. By splitting the pattern space,
MITRA keeps reducing the pattern discovery into smaller
sub-problems similarly to the SPELLER algorithm (Sagot,
1998). MITRA also takes advantage of pairwise similarity
between instances. These similarities can be used to
construct a graph where each vertex is an /mer in the
sample and there is an edge if the two /mers are similar
(e.g., differ in no more than 2d positions). An (I, d) — k
pattern will correspond to a cligue of size k in this graph.
This type of approach is the basis of the WINNOWER
algorithm (Pevzner and Sze, 2000). In fact, we show that
we can impose stronger conditions on the graph for the
existence of a pattern than simply a clique of size k.

Splitting pattern space

MITRA splits the space of all possible patterns into
disjoint subspaces corresponding to patterns that start with
a given prefix. A pattern is called weak if it has less than k
(I, d)-neighbours in the sample. A subspace is called weak
if all patterns in this subspace are weak. For most of the
subspaces, we can quickly conclude that they are weak
and save time by not searching the subspace exhaustively.
For example, if we are looking for patterns of length /
we would first split the space of all /mers into 4 disjoint
subspaces. The first subspace would be the space of all
Imers starting with A, the second subspace would be the
space of all /mers starting with C, etc. We further employ
strategies for determining whether the subspace contains
a (I,d) — k pattern. If we can rule out that a subspace
contains such a pattern, we stop searching in this subspace
and release the memory slot. If we cannot rule out that a

S$356

Finding composite regulatory patterns in DNA sequences

subspace contains such a pattern, we split this subspace
again on the next symbol and repeat. The key ingredient
of MITRA is the method to rule out whether a subspace
contains a (I, d) — k pattern.

Mismatch tree data structure

Mismatch trees are similar to the suffix trees and tries
that have a long history of applications to string matching
problems (see Gusfield (1997)). The paths from the root
to the leaves in a mismatch tree represent not only the
substrings in the data (like in suffix trees and tries),
but also all neighbours of these substrings with up to k
mismatches. The data structure is a variation of the sparse
prediction trees from Eskin et al. (2000). A mismatch
tree is a rooted tree where each internal node has 4
branches, each labelled with a symbol in {A, C, G, T}.
The maximum depth of the tree is /. Each node in the
mismatch tree corresponds to the subspace of patterns P
with a fixed prefix (defined by the path from the root to
the node) and contains pointers to all /mers instances from
the sample that are within d mismatches from a pattern
P € P (valid /mers). The tree is initialized to contain only
aroot node and is explored in a depth first fashion over the
course of the algorithm.

MITRA start with examining the root node of the
mismatch tree that corresponds to the space of all patterns.
When examining a node, MITRA tries to prove that it
corresponds to a weak subspace. If we can not prove it,
we expand the node’s children and examine each of them.
This corresponds to splitting the pattern subspace into 4
separate parts. Whenever we reach a node corresponding
to a weak subspace, we backtrack, effectively eliminating
the subtree rooted at that node from our search. The
intuition is that many of the nodes correspond to weak
subspaces and can be ruled out. This allows us to
avoid searching much of the pattern space that would
be searched in SDA. If we reach depth [, the [mer
corresponding to the path from the root to the leaf
corresponds to an (/,d) — k pattern and the pointers
from this node correspond to the instances of this pattern.
In practice, we do not need to explicitly maintain the
mismatch tree in memory since we ‘virtually’ traverse the
mismatch tree in the depth first fashion.

MITRA keeps track of all valid /mers at each node in
the tree (i.e., instances of patterns from the subspace of
patterns that correspond to the node). An /mer is valid for
a node if its prefix matches the prefix of the node with
at most d mismatches. The set of valid /mers for a node
is a subset of the set of valid /mers for the parent of the
node. MITRA efficiently generates the set of valid /mers
for a node by keeping track of the number of mismatches
between each valid /mer and the prefix of the node. For
a valid /mer in the parent of a node, there are two cases.
Either the position corresponding to the branch to the child

matches the /mer, or the position corresponding to the
branch to the child does not match the /mer. In the first
case, the /mer is still valid for the child. In the second
case, the count of mismatches for that /mer increases. If
the mismatch count exceeds the threshold d, the /mer is
not passed on to the child. Thus a child node’s set of valid
[mer is simply the set of valid /mers of the parent that
either match the label of the branch to the child or are still
within an acceptable number of mismatches of the prefix.

The MITRA algorithm is as follows. We first examine
the root node that corresponds to the set P of all 4 Imers
of length /. This node points to all /mers in the sample.
We then examine the first child, A. This child points to
all of the /mers in the sample that have prefix A (with
0 mismatches) and to all of the /mers in the sample that
have a different prefix (with 1 mismatch). We continue
with a depth first search and test every node to see if
it corresponds to a weak subspace. If yes, we backtrack
since there is no (/, d) — k pattern in this subspace. If we
reach depth [, then the node corresponds to an (I, d) — k
pattern. We then compute the score of the pattern and
output the pattern along with the score if it is above
some threshold that we consider interesting. Since we
are finished with this pattern, we backtrack in the tree,
collapse the current node, and expand the next node. Since
the only expanded nodes are along the current search path,
there is a maximum of / stored nodes in the tree (counting
the root node) which bounds the memory usage of the
algorithm. Unlike in the SDA algorithm, we do not need
to keep all of the patterns in a large table.

Consider a very simple example of finding the patterns
of length 8 with up to 1 mismatch in the input sequence
AGTATCAGTT shown in Figure 1.

A simple test for ruling out a node is simply checking
if it contains less than k valid /mers. We refer to this
algorithm as MITRA-Count that is in fact very similar to
the Speller algorithm (Sagot et al., 1995; Sagot, 1998).
The main difference is that Speller uses a suffix tree to
store the data and keeps pointers to nodes in the suffix tree
rather than pointers to the actual /mers in the sample. In
Sagot (1998) a worst-case complexity analysis for Speller
was presented which also applies to MITRA-Count. In
practice, both Speller and MITRA-Count will usually
need to traverse a significantly smaller portion of the
search space than the SDA algorithm. This explains why
MITRA-Count is faster than SDA even though it pays the
penalty of updating the data structure.

Incorporating pairwise similarity into the sample
driven approach

The key new ingredient of MITRA is an insight that the
information about pairwise similarities between instances
of the pattern can significantly speed up the sample-driven
approach. We take advantage of this information using an

S§357

E.Eskin and P.A.Pevzner

. Jo
G|T |A AIGIT AG[T
T|A[T GIT|A G[T [A
AT|C A TIAT T|A[T
T|C|A AT C 4 AT |C
ClAlG of1]1 TICIA| [o]1]1 T|C|A
AG[T AIG|T CIAIGI ATGIT CIAIG
GIT [T G|T|A ASE| 6T A AG|T

T|A[T TAlT GIT T
AT |C A|T|C

T|C|A TIC|A T

C|A|G C|A|G

A|GT AIGIT

GIT [T G|T|T

QFra-3r-H0»[—
HQP>O=>HQ—
H=Eara-HE3

Fig. 1. A Mismatch Tree for a sequence AGTATCAGTT corresponding
to a search for (8, 1) motifs. The substrings (instances) (8mers) in
the input sequences are AGTATCAG, GTATCAGT and TATCAGTT. The
paths from the root to the nodes define the labels of the nodes.
The nodes contain a record for each substring which contains (i)
the number of mismatches between the prefix of a substring in the
sequence and the label of the node and (ii) a pointer to the tail of the
substring. The pointer to the tail of the substring changes position
as we move down the tree. (a) The tree is in its initial state. (b) The
tree after expanding the path A. (c) The tree after expanding the path
AT . Notice that one of the instances reached the maximum number
of allowed mismatches. This instance would not be passed farther
down the tree.

insight from Pevzner and Sze (2000). We call this variant
of the MITRA algorithm MITRA-Graph.

We will construct a graph that models this pairwise
similarity. Given a pattern P and a sample S we construct a
graph G (P, S) where each vertex is an /mer in the sample
and there is an edge connecting two /mer if P is within d
mismatches from both /mers. For an (/, d) — k pattern P
the corresponding graph contains a clique of size k. Given
a set of patterns P and a sample S, define a graph G (P, S)
whose edge set is a union of edge sets of graphs G(P, S)
for P € P. Each vertex of G(P, S) is an /mer in the
sample and there is an edge connecting two /mers if there
is a pattern P € ‘P that is within d mismatches from both
Imers. If for a subspace of patterns P we can rule out an
existence of a clique of size k, then we can prove that the
subspace is empty. This idea leads to a significantly more
efficient pruning of the mismatch tree than in MITRA-
Count and Speller. To implement this idea MITRA-Graph
keeps list of the edges of the graph G (P, S) at each node
of the tree and efficiently updates this list while traversing
the tree.

The WINNOWER algorithm by Pevzner and Sze (2000)
constructs the following graph. Each /mer in the sample
is a vertex. An edge connects two vertices if the corre-
sponding /mers have less than 2d mismatches. Note that
instances of a (I, d) — k pattern form a clique of size k in
this graph. Since cliques are difficult to find, WINNOWER
takes the approach of trying to remove edges that do not
correspond to a clique. Once all of the ‘spurious’ edges

are removed, in many cases the problem is easy to solve
since only the clique remains. A problem with the WIN-
NOWER approach is that for subtle signals many edges
would remain making it difficult to find the clique.
MITRA-Graph adapts this idea into our framework
and (implicitly) constructs a graph at each node in the
mismatch tree. We remove edges which we are certain
are not part of a clique. If no potential clique remains,
we rule out the subspace corresponding to the node and
backtrack. If we cannot rule out a clique, we split the
subspace of patterns considered by examining the child
nodes. There exists an innovative difference between the
WINNOWER algorithm and MITRA-Graph. MITRA-
Graph knows the prefix of the pattern while looking for a
clique while WINNOWER does not. WINNOWER must
be more conservative in removing edges because it is
harder to rule out a clique without knowing the prefix of
the pattern. Therefore, MITRA-Graph has the ability to
remove edges more efficiently than WINNOWER.

Improvements over the WINNOWER

At each node of the tree, we remove edges by computing
the degree of each vertex. If the degree of the vertex is
less than k — 1, we can remove all edges that lead to the
vertex since we know it is not part of a clique. We repeat
this procedure until we cannot remove any more edges. If
the number of edges remaining is less than the minimum
number of edges in the clique we can rule out the existence
of a clique and backtrack.

The problem with this approach is how to efficiently
construct the graph at each node since building it from
scratch at every node of the tree is impractical. Instead of
constructing the graph from scratch, we construct it based
on the graph at the parent. Let ¢ be an edge connecting
two [mers such that the first /mer matches the prefix of
the pattern subspace with d; mismatches and the second
Imer matches with d, mismatches. We denote the number
of mismatches between the tails of the first and second
Imer m. The edge between these /mers exists in the pattern
subspace if and only if d| < d,d, < d and d; + d» +
m < 2d. In the root node since d; = dy = 0, an edge
exists only if m < 2d which is the equivalent graph to
WINNOWER. However, with moving down the tree the
condition becomes much stronger than the WINNOWER
condition and typically lead to better pruning. We can
compute the edges of a node based on the edges of parents
of the node by keeping track of the quantities dy, d», and
m for each edge.

To summarize, the MITRA-Graph algorithm works as
follows. We first compute the set of edges at the root node
by performing pairwise comparisons between all /mers.
We traverse the tree in a depth first order passing on the
valid edges and keeping track of the quantities d, d», and
m. At each node we prune the graph by eliminating any

S358

Finding composite regulatory patterns in DNA sequences

edges which correspond to vertices that have degrees of
less than k — 1. If there are less than the minimum number
of edges for a clique, we backtrack. If we reach a leaf of
the tree (depth /) then we output the corresponding pattern.

The MITRA-Graph pruning condition is very efficient.
For example, in the (15,4) challenge problem from
Pevzner and Sze (2000), we typically only need to traverse
the nodes at depth 3 before we can rule them out. So
although MITRA-Graph has a higher overhead per node
than MITRA-Count, it typically searches a much smaller
space.

DISCOVERING DYAD SIGNALS

For dyad signals, we are interested in discovering two
monads that occur a certain length apart. We use the
notation (I — (s1,s2) — l»,d) — k pattern to denote a
dyad signal which consists of two monads (a pattern of
length /; and pattern of length [») separated by at least
s1 nucleotides and at most s> nucleotides which occurs at
least k times in the sample. The key feature of MITRA-
Dyad is a possibility to discover dyad patterns with
extremely weak monads. This is achieved by reducing the
search for (1 — (s1, s2) — I, d) — k dyad pattern to the
search (/1 + I, d) monad pattern.

The MITRA-Dyad algorithm casts the dyad discovery
problem into a monad discovery problem by preprocessing
the input and creating a ‘virtual’ sample to solve the
(I1 + >, d) — k monad pattern discovery problem in this
sample. The solution to this monad problem in the virtual
sample is the solution to the dyad discovery problem.

Specifically the preprocessing is as follows. For each
[1mer in the sample and for each s € [s1, s2] we create
an [} + lrhmer which is the /;mer concatenated with the
[>mer upstream s nucleotides of the /;mer. Note that the
number of elements in the ‘virtual’ monad sample will be
approximately (sp — s1 + 1) times larger than the original
sample. An (/1 + I, d) — k pattern in the ‘virtual’ monad
sample will correspond to a (11 —(s1, s2) —l>, d) —k pattern
in the original sample and we can easily map the solution
from the monad problem to the dyad problem.

An important feature of MITRA-Dyad is an ability to
search for long patterns (see the Tests section). We remark
that the Marsan and Sagot (2000) algorithm may have an
advantage while searching for shorter patterns due to the
use of suffix trees.

If the range s> — 51 + 1 of acceptable distances between
monad parts in a composite pattern is large, the MITRA-
Dyad algorithm becomes inefficient. A simple approach
to detect these patterns is to generate a long ranked list of
candidate monad patterns using MITRA and then check
each occurrence from each pair from the list to see if
they occur within the acceptable distance. The composite
pattern is detected if this ranked list is long enough to
contain both monads that form the composite pattern.

TESTS
Scoring patterns

Scoring is a central issue in motif discovery. The scoring
functions evaluate the multiple alignment formed by the
instances of the motif. They vary from a trivial one like
the number of instances of the pattern in the sample to a
more involved like distance from consensus, sum-of-pairs,
entropy-based scores and others (see Pevzner (2000)).

MITRA is flexible with respect to the particular scoring
function used since it first selects many candidate patterns
and provides an ability to further evaluate each pattern
(and the resulting multiple alignment) with any scoring
function. While most of the motif search approaches have
a fixed scoring function, (Bailey and Elkan, 1995; Buhler
and Tompa, 2001; Lawrence et al., 1993; Neuwald et al.,
1995; Pevzner and Sze, 2000) MITRA can be adapted to
accommodate nearly any scoring function.

One problem faced by pattern based approaches is that
some patterns are over represented because of nucleotide
bias and low complexity regions. In general patterns
that consist of common nucleotides in a sample will
occur significantly more often simply by chance than
patterns that consist of rare nucleotides. Similarly, low
complexity patterns are often over-represented because
of low complexity regions that may occur in part of the
sample.

A possible approach is to set a low threshold £ and then
score all of the patterns that are returned with a scoring
function to determine which patterns are statistically
significant. A problem is that there are too many over-
represented patterns to make this approach feasible. If the
threshold is low enough then the output is flooded with the
over-represented patterns. If the threshold is high enough
to reduce the output size, the only patterns in the output
are the over-represented patterns.

To solve this problem we use a dynamic threshold that
is a function of the pattern. k is increased or decreased
depending on the specific pattern. Typically, we increase
the threshold for over-represented patterns such as patterns
consisting of common nucleotides and low complexity
patterns (see Eskin et al. (2002) for details).

Simulated data

Pevzner and Sze (2000) defined the challenge problem
which many of the best motif discovery methods had
difficulties with. The challenge problem corresponds to
finding a (15,4) monad signal of length 15 with 4
‘random’ mismatches implanted at random positions in
t = 20 randomly generated sequences of length n = 600.
Pevzner and Sze (2000) designed the algorithms to solve
the challenge problem but failed to solve the very difficult
problem of finding (14, 4) motifs. Although Buhler and
Tompa (2001), and Keich and Pevzner (2002a) designed

S$359

E.Eskin and P.A.Pevzner

the algorithms to find (14,4) motifs, a more difficult
problem of finding motifs that only occur in 13 out of
20 sequences in the sample (corrupted sample) is almost
impossible to solve. Such motif will be buried under an
avalanche of on average 1363 ‘random’ motifs (Keich and
Pevzner, 2002b). Therefore, the problem of finding a dyad
motif consisting of two (14,4) monad motifs occurring
in 13 of 20 samples cannot be reduced to two separate
problems of finding two (14, 4) monads. We define the
dyad challenge problem in which 13 of ¢t = 20 sequences
of length n = 600 contain a dyad signal formed by a pair
of (14, 4) monad signals separated by 20 nucleotides.

To evaluate MITRA on synthetic data, we generated a
sample of ¢t random sequences of length n drawn from
a uniform nucleotide distribution. For each sample, we
generated a random /mer which represents the target
signal. We implanted the /mer into each of the t sequences
at random positions, each time with d mismatches. In
a more biologically relevant case of ‘corrupted’ samples
(Pevzner and Sze, 2000), we implant the /mer into k < ¢
sequences (in this case t — k sequences do not contain the
signal). This is a more difficult variation of the challenge
problem.

In this evaluation framework, we assume that the
parameters (lengths and number of mismatches) of the
signals that we are looking for are known. Although this
is not a reasonable assumption in practice, it is reasonable
for an evaluation methodology since the methods can
be extended to iterate over reasonable settings of the
parameters in practice.

By varying [and d, we generated the motif finding
problems of different complexity and evaluated the per-
formance of PDA, SDA, and MITRA (Table 1). Pevzner
and Sze (2000) showed that for n = 600 and ¢t = 20
MEME, CONSENSUS, and GibbsDNA fail for (11, 3),
(12,3), (13,4), (14,4), (15,4), (16,5), (17,5), and
(18, 6) problems. A new random projections algorithm
Buhler and Tompa (2001) is able to solve very difficult
problems of (14,4), (16,5), and (18,6). MITRA was
able to solve all of the problems presented in the table
including the (14, 4) problem. In addition, MITRA (as
well as SDA and PDA) can solve the ‘corrupted’ version
of these problems where the pattern occurs in some but
not all of the sequences.

To evaluate MITRA-Dyad we tested it on the dyad
challenge problem. We randomly generated ¢ sequences
of length n and implanted a dyad signal into k of the
sequences. The dyad signal we inserted was a pair of (I, d)
signals separated by 20 bases. For our experiments we
used the following parameters n = 600, t = 20, k = 13,
[= 14, and d = 4. MITRA was able to recover the pattern
by searching for a (14 — (20, 20) — 14, 8) — 13 pattern.
It corresponds to approximately finding a (28, 8) monad
pattern (Table 1). We also tested the method of van Helden

Table 1. The performance of PDA, SDA, MITRA-Count and MITRA-Graph
on synthetic data. The CPU time is given in minutes and the memory usage
MEM is given in megabytes. In all experiments, n = 600, t = 20 and the
signal occurs in all of the sequences (k = 20). Blank entries ‘-’ or entries in
italics denote the inability for the algorithm to solve the challenge problem
because of a lack of memory or CPU resources. The italics entries are
estimates of the resources necessary to solve the problem. All experiments
were performed on machine with a Pentium III 750 GHz processor and 1 GB
of RAM

PDA SDA M-Count M-Graph
(,d)—k CPU/MEM CPU/MEM CPU/MEM CPU/MEM
(11,2)-20 270/2 1/4 1/5 1/5
(12,3)-20 1200/2 1/15 1/5 4/100
(13,3)-20 9000/2 5/65 2/5 2/40
(14,4)-20 —/— 10/250 4/5 10/210
(15,4)-20 —/— 20/1050 515 5/100
(16,5)-20 —/— 40/4200 25/5 20/400
(18,6)-20 —/— /- 25015 40/650
(28,8)-20 —/— /- —/- 4/50
(30,9)-20 —/— /- /- 5/90

et al. (2000) using their RSA-dyad web server on the same
sample. Their method failed to detect the dyad.

Monad motifs in DNA sequences

To evaluate MITRA on biological samples, we applied
it to upstream regions of orthologous genes with known
motifs from Buhler and Tompa (2001). Since a priori
we do not know the motif length, we simply iterate over
possible lengths. We can either do this directly, or a simple
variant of MITRA can compute patterns of all length at the
same time. By scoring not only the patterns at the leaves,
but the internal nodes as well, we can compute patterns of
multiple lengths in a single run of MITRA.

Table 2 contains a summary of the data as well as results
of MITRA’s prediction. In each of the cases, MITRA was
able to recover the correct motif. Moreover, in 4 out of 5
samples MITRA was able to find another strong motif that
was not documented in Buhler and Tompa (2001).

Composite motifs in DNA sequences

We applied MITRA-Dyad to two sets of biological
samples where there are known composite regulatory
signals. The first biological sample is formed from the
upstream regions involved in purine metabolism from
three Pyrococcus genomes studies in Gelfand et al. (2000).
The signal is a dyad consisting of two monad patterns that
occur at a distance varying from 22 to 23.

To detect these signals, we applied MITRA-Dyad. We
were able to detect the dyad as shown in Table 3 by
searching for (20 — (22, 23) — 20, 10) patterns. We also
applied the RSA-dyad algorithm of van Helden et al
(2000) to the same sample. Their method registered dyads
inside many of the component monads since they are long

S360

Finding composite regulatory patterns in DNA sequences

Table 2. The performance of MITRA for biological samples with monad
motifs from Buhler and Tompa (2001). For each sample, the prediction
of MITRA is shown. The nucleotides in the predicted patterns that match
the actual binding site are in bold. References: (A) preproinsulin promoter
region motif Wingender et al. (1996). (B) DHFR non-TATA transcription
start signal Means and Farnhan (1990). (C) MREa promoter Anderson et
al. (1987). (D)c-fos serum response element Natsan and Gilman (1995). (E)
yeast early cell cycle box Mclnery et al. (1997)

Sequence Length Num MITRA Ref.
(bases) Seq. Predictions

preproinsulin 7689 4 CCTCAGCCCCC (A)

DHFR 800 4 TGCAATTTCGCGCCAAAC B)

metallothionein 6823 4 TGCGCCCGG ©

c-fos 3695 5 CCATATTAGGACA (D)

yeast ECB 5000 5 TTTCCCATTAAGGAAA (E)

Table 4. URS1 and UASH motifs from GuhaThakurta and Stormo (2001).
Binding sites for the gene upstream from yeast are shown where the two
components of the composite pattern occur within 50 bases. Distances
between binding sites are given. A prediction that overlaps with the actual
site is considered correct. Six sequences (not shown) were not analysed
because the URS1 site and UASH site is more than 50 bases apart. The
last row shows the top scoring pattern of MITRA-Dyad. The top 3 ranked
patterns were minor variants of the shown pattern.

Gene ID URS1 UASH Dist.
YDR285W TCGGCGGCTAAAT GATTCGGAAGTAAA 20
YERO044C-A TGGGCGGCTAAAT TCTTTCGGAGTCATA 23
YER179W AAATAGCCGCCCA TTGTGTGGAGAGATA 32
YHRO14W AAATAGCCGCCGA TAATTAGGAGTATA 19
YNL210W TTTTAGCCGCCGA GGTTTTGTAGTTCTA 37
MITRA-Dyad TAGGCGCCTA-(9,27) -TTTGGAG

Table 3. Dyad signals from P. horikoshii (Gelfand et al., 2000) predicted by
MITRA-Dyad. The last row shows the consensus pattern which is generated
by choosing the most frequent nucleotide from the instances of the pattern at
each position

Name Dyads found by MITRA-Dyad
purC TTTGCCAGATATATGTCTAA---(23) -——~TTTTACATAAACATGGTGAA
purF TTCACCATGTTTATGTAAAA---(23) -~TTAGACATATATCTGGCAAA
purT TTAAACATATTTATGTTAAA---(22) ——~TTTAACATTTATACGTCAAT
purE ATTAGCACATATATGTAGAA---(23) --ATTGACATTAAATTGCTAGG
purD GTTAACACGTTTATGTAAAC---(23) -~TTTGACTTAAATATGGTGAT
purA ATTAACATAGCCCTGTCAAA---(23) --CTTTACTTACCCTTTGGTAA
purB ATTTCTACAAATATGTCAAA---(23) -~TTTACCGTGAAAATGGTGAT

purL-IT ATTGACATTTCTTTGTCAAA---(22) -~TTTTACATTTTTCTGGCAAA
cons. ATTAACATATATATGTACAA-(22,23) -TTTTACATATATATGGTAAA

signals and the ends of the signals are strongly conserved.
Since each component monad is 20 bases long, dyad
patterns in the form (3— (14, 14) —3, 0) would match each
component monad. However, this clearly is not the dyad
that we are looking for, but merely a side effect of having
a long monad signal in the sample. Their method was not
able to detect that the middle portion of these monads are
also conserved. In addition, their method was not able to
detect that the two conserved regions formed a long dyad
signal. Note that to find this signal, Gelfand et al. (2000)
made a conjecture that it is palindromic. MITRA-Dyad
does not require such an assumption and is able to find
non-palindromic signals as well.

We also analysed the samples with composite regulatory
signals studied by GuhaThakurta and Stormo (2001).
These samples consist of four sets of S. cerevisiae genes
which are regulated by two transcription factors where
the two transcription factors binding sites occur near
each other. In three of the sets, both monad signals are
strong enough to be identified on its own using a standard
motif finding program such as CONSENSUS, MEME,
ANN-Spec and Gibbs sampler (Hertz and Stormo, 1999;

Bailey and Elkan, 1995; Workman and Stormo, 1999;
Lawrence et al., 1993). The two monad signals for these
sets were detected by running the programs to first detect
the stronger of the two monads. The instances of the
stronger monad were then deleted from sequences and
the program was run over the sequences a second time
to identify the second monad (GuhaThakurta and Stormo,
2001).

In the fourth set of genes, one of the regulatory signals is
extremely weak, making it difficult to find with a standard
motif finding algorithm. The fourth set of genes is a set
of 11 genes which are regulated by both the URS1 and
UASH transcription factors. For 10 of these genes, the
two binding sites are located within the upstream region
-300 to -1. In 5 of the genes, the binding sites are within
50 bases of each other. Following the experimental setup
of GuhaThakurta and Stormo (2001), we analysed these
five upstream regions. In these sequences, the URS1 signal
is very strong while the UASH signal is very week. The
URSI signal is a (10, 2) — 5 signal. If we were looking
for just the URSI pattern, MITRA discovered 453 of
these types of signals and the actual binding site was the
highest ranking signal. On the other hand, the UASH is a
(7, 1) — 4 signal. MITRA discovered 1452 of these signals
and the actual binding site was the 810th ranking signal.
This signal is so weak that it is impossible to discern the
binding site from a random match on its own. To detect the
composite regulatory signal, we applied MITRA-Dyad.
We searched for (10 — (15,40) — 7, 3) patterns in the
samples. The result is shown in Table 4.

CONCLUSION

In 1984 Waterman et al. (1984) presented the SDA
algorithm for discovering motifs that searched the space of
all neighbours of the substrings in the data. Although this
algorithm is very fast in practice it requires a significant
amount of memory (Sagot, 1998). In this paper we have

S361

E.Eskin and P.A.Pevzner

presented a new motif finding algorithm MITRA that
uses the same idea but bypasses the excessive memory
requirements of SDA. MITRA uses a new approach to
pruning the search space which improves over previous
algorithms.

The MITRA algorithm can be extended to handle
insertions and deletions in addition to mismatches. For
MITRA-Graph, instead of storing the number of mis-
matches between two tails of instances, we store their
minimum edit distance. MITRA can also be extended
to handle wild card symbols using the data structure
defined in Eskin er al. (2000). A similar technique can
be applied to handle the symbols in other meta-alphabets
corresponding to pairs of letters like purines.

ACKNOWLEDGMENTS

Thanks to M.Gelfand, U.Keich and S.H.Sze for useful
discussions and many comments that significantly im-
proved the manuscript. We would like to thank J.Buhler,
M.Gelfand and G.Stormo for sharing biological samples.
In addition we would like to thank G.Stormo for also
sharing his manuscript prior to publication.

REFERENCES

Anderson,R.D., Taplitz,S.J., Wong,S., Bristol,G., Larkin,B. and
Hershman,H.R. (1987) Metal-dependent binding of a factor in
vivo to the metal-responsive elements of the methallothionein 1
gene promoter. Mol. Cell Biol., 7, 3574-3581.

Bailey,T.L. and Elkan,C. (1995) Unsupervised learning of multiple
motifs in biopolymers using expectation maximization. Mach.
Learn., 21, 51.

Berg,0.G. and von Hippel,LP.H. (1998) Selection of DNA binding
sites by regulatory proteins. Trends Biochem. Sci., 13, 207-211.

Buhler,J. and Tompa,M. (2001) Finding motifs using random pro-
jections. In Proceedings of the Fifth Annual International Con-
ference on Computational Molecular Biology (RECOMBOI). pp.
69-76.

Eskin,E., Gelfand,M.S. and Pevzner,P.A. (2002) Genome wide
analysis of bacterial promoter regions (submitted).

Eskin,E., Grundy,W.N. and Singer,Y. (2000) Protein family clas-
sification using sparse Markov transducers. In Proceedings of
the Eighth International Conference on Intelligent Systems for
Molecular Biology. AAAI Press, Menlo Park, CA, pp. 134-145.

Galas,D.J., Eggert,M. and Waterman,M.S. (1985) Rigorous pattern—
recognition methods for DNA sequences. J. Mol. Biol., 186, 117-
128.

Gelfand,M.S., Koonin,E.V. and Mironov,A.A. (2000) Prediction
of transcription regulatory sites in archaea by a comparative
genomic approach. Nucleic Acids Res., 28, 695-705.

GuhaThakurta,D. and Stormo,G.D. (2001) Identifying target sites
for cooperatively binding factors. Bioinformatics, 17, 608-621.

Gusfield,D. (1997) Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cambridge Uni-
versity Press, New York.

Hertz,G. and Stormo,G. (1999) Identifying DNA and protein
patterns with statistically significant alignments of multiple

sequences. Bioinformatics, 15, 563-577.

Hughes,J.D., Estep,P.W., S.Tavazoie and Church,G.M. (2000)
Computational identification of cis-regulatory elements associ-
ated with groups of functionally related genes in Saccharomyces
cerevisiae. J. Mol. Biol., 10, 1205-1214.

Keich,U. and Pevzner,P.A. (2002a) Finding motifs in the twilight
zone. In Proceedings of the 6th International Conference on
Computational Molecular Biology (RECOMB 2002).

Keich,U. and Pevzner,P.A. (2002b) Subtle motifs: defining the limits
of motif finding algorithms. Bioinformatics.

Lawrence,C.E., Altschul,S.F., Boguski,M.S., Liu,J.S.,
Neuwald,A.F. and Wootton,J.C. (1993) Detecting subtle
sequence signals: a Gibbs sampling strategy for multiple
alignment. Science, 262, 208-214.

Liu,X., Brutlag,D.L. and Liu,J.S. (2001) Bioprospector: Discover-
ing conserved dna motifs in upstream regulatory regions of co-
expressed genes. In Proceedings of the 2001 Pacific Symposium
on Biocomputing. Vol. 6, pp. 127-138.

Marsan,L. and Sagot,M. (2000) Algorithms for extracting structured
motifs using a suffix tree with applications to promoter and
regulatory site consensus identification. J. Comput. Biol., 7, 345—
360.

Mclnery,C.J., Partridge,J.F., Mikesell,G.E., Creemer,D.P. and Bree-
den,L.L. (1997) A novel mcml-dependent element in swi4,
cln3, cdc6, cdc47 promoter activates m/g1-specific transcription.
Genes and Development, 11, 1277-1288.

Means,A.L. and Farnhan,P.G. (1990) Transcription initiation from
the dihydrofolate reductase is positioned by hip! binding at the
initiation site. Mol. Cell Biol., 10, 653-651.

Natsan,S. and Gilman,M. (1995) Yyl facilitates the association of
serum response factor with the c-fos serum response element.
Mol. Cell Biol., 15, 5975-5982.

Neuwald,A., Liu,J. and Lawrence,C. (1995) Gibbs motif sampling:
Detection of bacterial outer membrane repeats. Protein Sci., 4,
1618-1632.

Pavesi,G., Mauri,G. and Pesole,G. (2001) An algorithm for finding
signals of unknown length in DNA sequences. Bioinformatics,
17, S207-S214. Proceedings of the Ninth International
Conference on Intelligent Systems for Molecular Biology.

Pevzner,P.A. (2000) Computational Molecular Biology: An Algo-
rithmic Approach. The MIT Press.

Pevzner,P.A. and Sze,S. (2000) Combinatorial approaches to finding
subtle signals in DNA sequences. In Proceedings of the Eighth
International Conference on Intelligent Systems for Molecular
Biology. pp. 269-278.

Sagot,M. (1998) Spelling approximate or repeated motifs using a
suffix tree. LNCS, 1380, 111-127.

Sagot,M.-F., Escalier,V., Viari,A. and Soldano,H. (1995) Searching
for repeated words in a text allowing for mismatches and gaps.
In Baeza-Yates,R. and Manber,U. (eds), In Proceedings of the
Second South American Workshop on String Processing. Viiias
del Mar, Chili, pp. 87-100.

Sze,S., Gelfand,M.S. and Pevzner,P.A. (2002) Finding subtle motifs
in DNA sequences. In Proceedings of Pacific Symposium
on Biocomputing. pp. 235-246.

van Helden,J., Rios,A.F. and Collado-Vides,J. (2000) Discovering
regulatory elements in non-coding sequences by analysis of
spaced dyads. Nucleic Acids Res., 28, 1808—1818.

Vanet,A., Marsan,L. and Sagot,M. (1999) Promoter sequences and

$362

Finding composite regulatory patterns in DNA sequences

algorithmical methods for identifying them. Res. Microbiol., 150, FAC: a database on transcriptionfactors and their DNA binding
779-799. sites. Nucleic Acids Res., 24, 238-241.

Waterman,M.S., Arratia,R. and Galas,D.J. (1984) Pattern recogni- Workman,C.T. and Stormo,G.D. (1999) ANN-Spec: a method for
tion in several sequences: consensus and alignm ent. Bull. Math. discovering transcription factor binding sites with improved
Biol., 46, 515-527. specificity. In Proceedings of Pacific Symposium on Biocomput-

Wingender,E., Dietze,P., Karas,H. and Knuppel,R. (1996) TRANS- ing. pp. 464-475.

S363

