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The comparison of several sequences is central to many problems of molecular biology.
Finding consensus patterns that define genetic control regions or that determine structu-
ral or functional themes are examples of these problems. Previously proposed methods,
such as dynamic programming, are not adequate for solving problems of realistic size.
This paper gives a new and practical solution for finding unknown patterns that occur
imperfectly above a preset frequency. Algorithms for finding the patterns are given as
well as estimates of statistical significance,

1. Introduction. In the mathematical analysis of macromolecular sequences
one of the most developed areas is the comparison of sequences. Varied and
powerful dynamic programming methods have been developed for the
optimal alignment of two sequences, for the best fit of one sequence ‘into’
another and for determining the best matching segments of two sequences.
Various methods for more rapid comparison of sequences have also been
developed that are particularly useful for screening data bases. The subject
of sequence comparison is reviewed elsewhere in this issue (Waterman, 1984).

The methods currently available for comparison of two sequences are not
as useful when applied to several sequences. Dynamic programming methods,
for exampile, take time and storage O[(2n)'] to compare r sequences of
length n. No previously known methods are adequate for these problems.
In this paper we address the problem of comparison of several sequences,
which is of considerable biological interest, and explicitly approximate the
probability that a pattern is held in common by at least a preset percentage
of the sequences. We introduce practical techniques that solve the problem
of finding these ‘consensus’ patterns for a set of sequences.
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The problem considered here is, in general terms, that of finding unknown
patterns (words over the alphabet) that occur imperfectly at or above a
preset frequency. The specific problems addressed are those of finding:

(i) unknown patterns that occur in r sequences, X, X3, X3 . . . , Xr,
(ii) known patterns that occurin x,x,;, X3...,X,,

and
(iii) alignmentsof x;,x,...,x,.

Algorithms and estimates of statistical significance of the patterns found by
these algorithms are presented in the next sections.

The problem of determining common patterns among sequences has been
considered an important one since the first sequence data for proteins and
nucleic acids became available. Among the patterns that have clear biologi-
cal significance are those defining genetic control regions in DNA and those
determining structural or functional themes in protein sequences and their
respective DNA coding regions. Previous attempts to devise algorithms for
the detection of such patterns in several sequences were beset by various
difficulties.

In Sadler et al. (1983) regulatory pattern analysis is considered, using the
tools of dynamic programming. Since the presumptive regulatory patterns
are small and occur inexactly, algorithms to find long common matches
between two sequences are not of much use. The paper concludes “. . . these
tools are of limited value”.

Several attempts have been made to study these problems using the
concepts of finite automata and regular expressions. See Aho, Hopcroft and
Ullman (1974). For example, Abarbanel er al. (1984) implement regular
expression searches in a form convenient for use in molecular biology.
However, in all such programs it is necessary to know the approximate
identity of the pattern being sought. In the present paper, we consider the
problem of finding patterns of which there is no prior knowledge.

Stormo et al. (1982) use a concept from artificial intelligence, the percep-
tron, to find translation initiation sites in E. coli in mRNA sequences.
Minsky and Papert (1969) provide a detailed review of these concepts. These
methods are closely related to one developed by R. A. Fisher, called linear
discriminate analysis. See Gnanadesikan (1977) for a discussion of this
statistical technique. These techniques may prove useful for several biologi-
cal problems and should be more fully explored for nucleic acid and protein
sequence data.

The techniques we develop here are related to work of Parzen (1962), who
proposes a method of estimating probability density functions. See Waterman
and Whiteman (1978) for a discussion of the technique and its application to
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experimental data. Queen et al. (1982) propose a method closely related to
ours although their data analysis differs in critical ways which limit the
utility of their procedure. In addition, Dumas and Ninio (1982) treat a
sequence as a string of overlapping »n-mers and Marliere (1982) analyzes
tRNA sequences by computing a score for each overlapping n-mer. Our
algorithms make use of similar ideas.

2. Basic Algorithm. In this section, an algorithm is presented which applies
to the three problems described in the Introduction.
The data are a set of r sequences

ENRE: ]
1 11X12 « + - X1p,
b 23 X21X22 -+ . Xon,
X = =
Lx,_ _xrlxr2 e xmr_

where x;; are members of a finite alphabet, such as {A, C, G, T}.

The analysis is based on the occurrence of k letter words, which may be
ordered lexicographically (AA...AA,AA .. AT,...,TT ... TT)and put
into correspondence with the integers 0, 1, ..., 4* — 1. Since we are
concerned with the occurrence of similar patterns, we must define sets of
similar words which we will call neighborhoods. Neighborhoods of words are
defined by functions, f, mapping a k-letter word into a set of k-letter words.
For example, if w = AT and f(w) = {w' : w' is one mismatch from w} then
fiw) = f(AT) = {CT, GT, TT, AA, AC, AG}. A neighborhood is determined
from a list of such functions.

Basic to our analysis is an enumeration of the words and their neighbors.
For a string y = y,y, ...y, of length L, define

Gwa = {m :w €Ef4(VYm¥mat1 - - - Ymak—1), L SmSL+1—k}|

where |B| is the number of elements in the set B. In other words, ¢,,4 is the
number of times word w is an f; neighbour of some k-letter words in
Yi-.. VL.

For example, let kK = 2 and y = ACTAAA. Consider two neighborhood
functions fo(*), the exact match function, and fi(*), the single-mismatch
function. Then the matrix, Q, of neighbor occurrences [Q = (g,.4)] is
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CA, for example, does not occur exactly in y, but y does have four words
that are one mismatch from CA.

Next we compute § = (§,q) where §,4is | if d = min{! : g,; ¥ 0}, and §,.q
is 0 otherwise. For the above example,
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The idea is to count only the best occurrence of a word w in the string y.
The search of the sequence set, X, will proceed by performing a search
for the most frequently occurring word in the block from column j to
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column j + W — 1. The window width, W, is a parameter set by the user.
Too broad a search will give insignificant results, too narrow a search will
usually not find a desired pattern. In Section 5 the statistical significance is
assessed in detail. The sequences searched are

X1,jX1,j41- - - X1,j+W—1

X2,§ X241+ « . X2,j4w—1

XrjXrj+1 « o« Xrj+w—1.

For each line i, 1 <i<r, the 0 = O(i) matrix above is calculated and a
summation matrix

V=23 00
i=1

is found. V = (¥,4) has the interpretation that y,4 is the number of lines
for which the best occurrence of word w is as a dth neighbor.
Different occurrence scores can be calculated from V. First,

Y = Z Vywd
d>1

is the number of lines in which any neighbor of word w occurs. A score
weighted for the distance between the word and its neighbor is more appro-
priate. The general form is

Sw = Z AaVwa-
d=>1
A winning word w, the ‘most common’ pattern, satisfies
max,, (S,') =S, =5.
The scoring used in the programs discussed here is

A = Number of letters in common between w and members of f;(w).
a=
k

In particular, with this weighting

Aexact = 1
and
d
Ad mismatches = | _;

The algorithm begins with a set fi, f;, . . . of neighborhood functions and a
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window width W. The winning word score is computed forj =1, 2, . . ..
Estimates of statistical significance can be obtained (see Section 5 below)
from the sequence probability distributions and the neighbors f, f;, . . . and
used to set W. For the problems of finding unknown and known patterns,
specific algorithms are presented in Sections 3 and 4.

3. Search for Unknown Patterns. The assumption here is that the ‘consensus’
pattern among the set of sequences is unknown. This is the problem of most
interest and the one which has attracted much attention from biologists
because of the need to find significant sequence patterns that define specific
functions among the rapidly expanding sequence data. The ‘Pribnow box’
from bacterial promoters or the ribosome binding site in bacteria, the
‘Shine-Dalgarno sequence’, are examples of such patterns that define part
of the function of transcription initiation (Hawley and McClure, 1983) and
translation initiation (Steitz and Jakes, 1975) respectively. In the first
example, the pattern of this ‘box’ only becomes well-defined for a relatively
large set of promoter sequences. That is to say, the ‘shadow’ of the con-
sensus pattern is not very precise among the sequences. The approach to
finding the pattern that casts this shadow that prescribes exhaustively
comparing all subsequences of the set, requires an enormous number of
operations even for short sequences and points to the need for efficient
algorithms for pattern recognition of this kind. If there were 100 sequences
and only two positions for each sequence, there would be 2!%° ~ 1.26 X 103°
possible overall configurations of the 100 sequences. Using this method
to find patterns thus presents a hopeless task. The algorithm we present, on
the other hand, here takes time approximately proportional to

W—k+ 1)<Zr n,-) (§ lfd|> 4%,

i=1

The search begins, as in Section 2, with a set of neighbors f;, f;, .. . and a
window width W. The scores of all words are calculated at each window
position and the best one determined. If desired, the sequences can be
‘aligned’ on a statistically significant word or pattern: a ‘column’ can be
formed. Forming a column in this manner, on a word such as TATAAT in
the bacterial promoters, may allow a second pattern, such as the TTGACA
for the upstream, ‘—35’, box, to be located much more easily.

In a test of these concepts on 59 sequences of bacterial promoter regions
approximately 60 bases long, k = 6 was used. With neighborhood functions:
Jfo = exact, f; = 1 mismatch, £, = 2 mismatches, window width W = 12 was
used. For neighborhood functions: f; = exact, f{ = 1 mismatch, £, = 2 mis-
matches, f3 = 3 mismatches, W = 9 was used. We are also able to include
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insertions and deletions, either separately or along with mismatches. For
instance, we may use 1 mismatch and 1 insertion, or 1 mismatch and
1 deletion. With the above parameters the programmed algorithm easily
found both the —10 consensus and the —35 consensus.

4. Search for Known Patterns, In this section a pattern of interest
Y =YYz . ..Ymis assumed to be known. The Pribnow box,y = TATAAT,
for example, is such a pattern in the example of bacterial promoters (Hawley
and McClure, 1983). Similarly, a particular complete promoter sequence
of length 60 might be chosen as a known pattern. In any case the algorithm
outlined below would find the best ‘shadow’ of the pattern y in the set X of
sequences. This problem is clearly a special case of the pattern recognition
problem described in the previous section.

First choose a word w of length k fromy =y, ... y,,. In the Pribnow
box case this might be TATAAT with k = 6 but it also might be a & letter
subword of a full (longer) sequence. Within a window of width W, the
calculations of Section 2 are performed where

q1 = number of exact occurrences of w in row i

dw2 = number of one mismatch occurrences of w in row i

Only one line of Q, the wth row, is used in these calculations since we
assume prior knowledge of the desired patterns.

5. Estimates of Statistical Significance. For ease of analysis, we analyze
the score equal to the number of lines in which any neighbor occurs. (That
is, A\g = 1.0.)

Assume that, independently in every position on every line, each of the
four letters, A, C, G, T appears with probability 1/4. For any word z of
length k, the probability that the letters in &k given positions spell z exactly
is 47%, Let F = T4|f;| be the total number of k-letter neighbors of a given

word w. The probability that k random letters form a neighbor of w is 47 *F,
In Section 5.1 we present the essentials of our analysis and give some
numerical examples. Then, in Section 5.2, more details are presented.
5.1 Survey of the analysis. Assume that w is a given pattern of length %,
having F neighbors of length k. We use

a=(W—k+ 1)F)4*
to approximate the probability that some neighbor of w occurs, on a

given line, with a given position of the window of width W. Thus, if the
data were random, for each word and window position j, one would expect
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approximate matches to w on about ar of r lines. A fraction f > «ais extremely
unlikely.
Suppose we are looking for a pattern common to some preset fraction
B > o of the r sequences. For word w and window position j, the probability
that at least fBr lines yield approximate matches to w can be estimated as
1 —_—
exp[—rH(@, )], where H(B, a) = ﬁlog<£> + (1 — 3)10g<1___g> >0
is the entropy of B relative to a. Now there are n choices for the location j of
the window, and, if the pattern w is unknown, there are 4% choices for the
word w. Then our estimates of significance level p are

known pattern: p = nexpl—rH(S, o)]
unknown pattern: p = n4*exp[—rH(B, )].

Thus p is an upper bound, for random data, on the probability that in some
window position, an approximate match occurs on a fraction greater than or
equal to B of the r lines. If these estimates exceed 1, we use | instead.

Two examples are presented in Table 1 for patterns of length & = 6,
with r = 59 sequences of length n = 60. For the first example, the neighbor-
hood is 0, 1 or 2 mismatches, and F =1 + 18 4+ 135 = 154. The second
example has a neighborhood of 0, 1, 2 or 3 mismatches, and F =1+ 18 +
135 + 540 = 694.

TABLE 1

Estimates of Statistical Significance for Patterns of Length k¥ = 6 in
r = 59 Sequences with 60 Bases

Known Unknown

pattern pattern
F W « B H@,a) e p p
154 12 0.263  0.75 0.515 63X10" 38X10'? 15%X10°°
154 14 0338 0.75 0.354 87X10° s52x10% 21X10™*
154 16 0.414  0.75 0233 1.1X10°% 63X10°5 26X 107
694 7 0.339 0.75 0353 9.2X10'® 55%X10% 23x10™
694 8 0.508 0.75 0.123 72X 10% 43X 1072 1.0

5.2 Details of the analysis. Within a window of length W, there are
[ = W — k + 1 places for a block of k& consecutive letters. For each of these
I choices, consider the event, of probability @ = 47*F, that some neighbor
of word w occurs at that position. Regardless of the dependence of these
[ events, al is an upper bound on the probability of their union. We will use
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al = 4*¥F(W — k + 1) asour estimate of the probability « that some neighbor
of w occurs elsewhere in the window.

If the [ events were independent, the probability of their union is
1 — (1 — a)’, which is closely approximated by al whenever al < 1. An
exact bound is (1 — l/e)min@l, 1) < 1 — (1 — @) < min(al, 1), for
I =1,2,...and any 0 <a < 1. The [ events here are dependent, in a
complex way that we cannot analyze, and furthermore, the dependence
varies with the word w. For example, the events for two adjacent positions,
{xiX; . . . X} is a neighbor of w} and {x,x3 . . . Xx.4; is a neighbour of w},
are positively correlated if w = AAAAAA, and negatively correlated if
w = ACGTAC, using the neighborhoods of one or two mismatches. For
further discussion of this dependence see Waterman (1983) and Breen et al.
(1985).

Consider a fixed window position j. Independently, on each of r lines,
there is the event of probability a that some neighbor of w occurs. The
probability that exactly m of these events takes place is

(1)t -or.
m

For a prescribed threshold 8 between O and 1, the probability that
some neighbor of w occurs, within the window, on at least 8r of the r

lines, is
Y <’>ama — ),

Br<m<r m
As long as § > a and r is large, a good approximation for this sum is the large
deviation estimate, P (at least Br successes in r independent trials with indi-
vidual success probability o < ) = ¢7H(5:%) Here H(B, a) is the relative

entropy, H(f, o) = ﬁlog(ﬁ—) + (1 — ﬁ)log(ll—_-_—%) Note that when 8 = 1,
the probability of finding a neighbor of w on all r lines is «”, and H(f, o)
reduces to —log «, so that the approximation is exact: for§ = 1, ¢ 7H(E:®) =
e’ loga — o,

Finally, consider the shifting window position. At eachn — W + 1 = n
possible window positions, the event that some neighbor of w occurs within
that window on at least 8r of the r lines is approximately e7#(5® The
estimate of significance ne™ () is an upper bound on the probability that,
for a given word w, some window position reveals an approximate match
to w on at least fraction § of the lines.

The bound above can be used to choose a window size W. Pick a signifi-
cance level p, e.g. 0.01 or 0.001. To get ne="#(5*) < p we need
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1 n
H(B, o) =—log <—> ;
r P

so we let
oi(5)
e = —log| —].
r p
. 1 [n\ . e _ [P\
For 8 = 1, this says —loga >e=7log; ,le.a< e = :1- . Now
a <4 *F(W—k + 1) so we solve for W:
p 1/r
<—> =4F*FW—k+ 1),
n

p i/r
W= <;> 4*/F)+ (k —1).

For § < 1, we need approximations to solve H(B, o) =€ . Here ¢ is small,
so a will be slightly less than 8; we let a = 8(1 — §). Using log(l + x) =

_ e B _ _1=-B8
H(B, o) = H(B, —Bb) = Blog(ﬁ — 35> + (1 —B)log (1 ~5% 35>

-1
1
—_-[310g<1 — 6) + (1 —B)log [l + (—13?»8]
N 82\ [ (88 CAWA NN
cafo+E)ea-a 25 (25 ] -5

Thus to solve H(B, «) = €, we take a = (1 — §)8 with

— /

6. Aligning Sequences. Obviously most of the sequences must already be
approximately aligned. This may be done by finding long matches in all
sequences, or by using prior knowledge of biological functions such as the
beginning of coding regions.
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The algorithm and statistical significance estimates have already been
described. The approximate alignments can be improved, although not
drastically altered. The algorithm begins at some aligned positions and
searches until statistically significant matches are found.

Alignments on features other than matches are possible. For example,
the Noller-Woese (1981) method utilizes both matches and helical regions to
perform their phylogenetic analysis of ribosomal RNA secondary structure.
In Noller, Waterman and Woese (in preparation) these methods are given a
rigorous basis. The double-stranded regions are found by positioning a window
and then searching by moving another window across the approximately
aligned sequences until a region with significant base pairing is located.

7. Application to Biological Problems. Since DNA and protein sequence
information has been available, various short patterns have been identified
as having particular functional significance. In several presumptive regulatory
DNA sequences, for example, a candidate ‘consensus’ sequence, specifying
a particular biological function, has been identified by simple inspection of
several examples of DNA sequences known to determine such a function.
The ‘Pribnow box’ of bacterial promoter sequences (Pribnow, 1975) and the
‘Goldberg-Hogness’ box of eukaryotic polymerase II promoter sequences
are examples of such feature extraction by inspection (Schaller et al.,
1975; Goldberg, 1979; Breathnoch and Chambon, 1981). The difficulties
with this process are evident: there is no unambiguous definition of a ‘con-
sensus’ sequence; the subjective nature of the process introduces arbitrary,
unstated choices (such as alignment of the “boxes’’); the features that are
evident from the comparison of single letters may not be the most impor-
tant features of the functional pattern and it is not clear to what extent
the observed features are statistically significant. There are other potential
problems, some of which have been addressed by previous attempts at
pattern recognition, as briefly discussed in the introduction. The general
nature of these problems has been discussed previously (Sadler ef al., 1983;
Smith et al., 1981).

The method presented here overcomes many of the difficulties referred
to above by providing: a clear and explicit definition of a ‘consensus’
pattern; an algorithm for finding such patterns among many sequences and
an analysis of the statistical significance of these patterns. Furthermore, the
present method provides a general tool that can be used to detect more
subtle patterns. We need not confine our attention to the standard alphabet
{A, C, G, T} and single positions in the sequence. Since the method is equally
applicable to any set of strings of symbols, we may map sequences in the
standard alphabet into sequences in a sub-alphabet, or into an alphabet (or
sub-alphabet) of dinucleotides, trinucleotides, etc. and search for patterns
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in these non-standard alphabets, It has been suggested, for example, that
important features of the DNA-protein recognition are in the array of func-
tional groups in the grooves of B-form DNA (see Matthews ef al., 1982, for
example) or in the set of sequence-specific ‘twist’ and ‘roll’ angles, etc.
that modify the relatively uniform structure of the DNA molecule (Dickerson,
1983, Dickerson et al., 1982; Anderson et al., 1982). These features would
be manifest in patterns in one of the sub-alphabet sequences mentioned
above.

Regulatory signals in DNA sequences are particularly amenable to analysis
by the proposed method. Initially, we have given particular attention to the
bacterial promoter sequences, since they represent an extensive and welk
studied set of sequences with known function (Hawley and McClure, 1983).
The important patterns (in the standard alphabet) are reasonably well-
determined, so this set is an ideal test case. The known patterns in the —10
and —35 regions are easily found by our programs. The detailed results of
this study will be reported elsewhere. Among the functional sequences of
particular interest for further study are: the eukaryotic promoter sequence
for polymerases I, II and III, the mRNA capping site, the poly-A addition
site, enhancer sequences, the splicing sites for polll transcripts, ribosome
binding sites in prokaryotes and eukaryotes, the binding sites for various
proteins (CRP and various repressor proteins), hormone receptor sites,
common features in sequences surrounding mutational ‘hotspots’ and several
others, To be useful the present method only requires that we have several
examples of sequences with closely similar functions. It is worth noting here
that many sets of functional sequences exhibit a wide range of functional
activities among the members of the set (promoters of various strengths,
for example), and that the present method is easily modifiable to take this
into account. It is simply a matter of using weights, indicating the activi-
ties, in the algorithm to extract the patterns from various sequences. In this
manner a weighted, ‘consensus’ promoter, for example, can be specified.
In general, the more that is known about the function of a sequence the
more information can be extracted.
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