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AlignACE is a Gibbs sampling algorithm for identifying motifs that are
over-represented in a set of DNA sequences. When used to search
upstream of apparently coregulated genes, AlignACE ®nds motifs that
often correspond to the DNA binding preferences of transcription factors.
We previously used AlignACE to analyze whole genome mRNA
expression data. Here, we present a more detailed study of its effective-
ness as applied to a variety of groups of genes in the Saccharomyces cerevi-
siae genome. Published functional catalogs of genes and sets of genes
grouped by common name provided 248 groups, resulting in 3311
motifs. In conjunction with this analysis, we present measures for gau-
ging the tendency of a motif to target a given set of genes relative to all
other genes in the genome and for gauging the degree to which a motif
is preferentially located in a certain distance range upstream of transla-
tional start sites. We demonstrate improved methods for comparing and
clustering sequence motifs. Many previously identi®ed cis-regulatory
elements were found. We also describe previously unidenti®ed motifs,
one of which has been veri®ed by experiments in our laboratory. An
extensive set of AlignACE runs on randomly selected sets of genes and
on sets of genes whose upstream regions contain known transcription
factor binding sites serve as controls.
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Introduction

The recent increase in the number of sequenced
genomes and the amount of genome-scale exper-
imental data allows the use of computational
techniques to investigate cis-acting sequences con-
trolling transcriptional regulation. Some methods
seek to ®nd new sites for a given transcription fac-
tor based on a set of known sites, often by using
online search engines where one may submit
sequences to be scanned for known motifs
(Heinemeyer et al., 1998; Zhu & Zhang, 1999).
Others, such as AlignACE, seek to ®nd unknown
ing author:
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cle box.
DNA binding motifs for unspeci®ed transcription
factors by searching the regions upstream of
the translational start sites of a set of potentially
coregulated genes (Spellman et al., 1998; van
Helden et al., 1998; Brazma et al., 1998; Roth et al.,
1998).

AlignACE is based on a Gibbs sampling algor-
ithm and returns a series of motifs that are over-
represented in the input set. It previously has been
used to ®nd transcriptional regulatory DNA motifs
in Saccharomyces cerevisiae using groups of genes
derived from genome-wide mRNA expression data
(Roth et al., 1998; Tavazoie et al., 1999). While
many known cis-acting elements were identi®ed,
AlignACE returned many more motifs about
which no literature information was found. A dis-
tinguishing feature of most of the known motifs
was that their corresponding highest scoring geno-
mic sites tended to be strongly selective for the
upstream regions of the genes used to ®nd them.
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One might expect this to be always true, since each
motif is itself composed of sites in those regions,
but we found that the vast majority of the
unknown motifs were not very selective in this
way. Also, a subset of the known motifs seemed to
be preferentially positioned relative to the start of
translation.

Here, we describe statistics to measure these two
motif properties, which we call group speci®city
and positional bias. Furthermore, we present
results from the systematic application of
AlignACE to a sample set of functional groups of
genes in S. cerevisiae, as well as positive and nega-
tive control sets. These data sets allow us to cali-
brate AlignACE and the associated motif measures
so that empirical signi®cance thresholds for these
statistics may be determined. Many known cis-
regulatory elements, as well as novel motifs, are
identi®ed by this method.

Results

The input sets of genes

A total of 248 groups were examined, including
135 groups from the database at the Munich Infor-
mation Center for Protein Sequences (Heinemeyer
et al., 1998), 17 groups from the Yeast Protein Data-
base (Hodges et al., 1999), and 96 groups based on
common name root as listed in the table of open
reading frames (ORFs) from the Saccharomyces
Genome Database (SGD) (ftp://genome-ftp.stan-
ford.edu/pub/yeast/SacchDB; Cherry et al., 1998).
We considered only groups of six or more genes.
The number of genes in each of these groups range
from this minimum of six to as many as 707, with
an average of 42 genes per group. Runs of
AlignACE on the upstream regions of these groups
of genes produced 3311 motifs.

Since diverse sources of data were used to gener-
ate these groups of genes, no single mechanism of
control is expected to exert an in¯uence over all of
the members of any of the groups. It is therefore
important that each motif may consist of any num-
ber of sites, including zero, in each upstream
region submitted to AlignACE. Furthermore,
motifs found upstream of only a fraction of the
submitted genes may still be considered very sig-
ni®cant according to the measures developed here.
For example, the motif corresponding to binding
by the Leu3p transcription factor was found from
an AlignACE run on the upstream regions of 116
amino acid residue biosynthetic genes as an align-
ment of 19 sites upstream of only 17 of the 116
genes. Nevertheless, according to the statistics dis-
cussed below, it was one of the strongest motifs
found.

Positive and negative controls were also per-
formed. A total of 29 known transcription factors
with experimentally validated binding sites were
used to create a test set to see how often AlignACE
®nds expected sequence motifs. To determine the
false positive rate, a set of 250 control AlignACE
runs were done, 50 each with 20, 40, 60, 80 and
100 randomly selected ORFs. This distribution of
group sizes was chosen to be comparable to the
functional categories studied here and to span the
range of sizes of most gene sets to be analyzed by
this method in future applications.

Motif measures

To reduce the set of 3311 motifs under consider-
ation, we devised two motif measures: one related
to group speci®city, the other to positional bias.
The group speci®city score gauges how well a
given motif targets the upstream regions of the
genes used to ®nd it relative to the upstream
regions of all of the genes in the genome. The pos-
itional bias score indicates the degree to which a
motif tends to be preferentially positioned in a par-
ticular distance range upstream of the translational
start (see Methods).

These measures are distinct from and supersede
those used in the initial report using AlignACE
(Roth et al., 1998). In that study, the two relevant
measures were MAP score and a general speci®city
score, not to be confused with the new group
speci®city score. The MAP score measures the
degree to which a motif is over-represented rela-
tive to the expectation for the random occurrence
of such a motif in the sequence under consider-
ation. It is the central score used by AlignACE to
rate the different alignments it samples (see
Methods). The main drawback to the MAP score is
the fact that some motifs occurring ubiquitously in
a genome (e.g. A-rich motifs in S. cerevisiae) are
scored very highly, but are not likely to be relevant
to the speci®c set of genes in question. The general
speci®city score was designed to give an indication
of how frequently a motif occurs in the genome.
Cutoffs based on this score were then used in an
attempt to eliminate the ubiquitous motifs with
high MAP scores. However, many real motifs
occur frequently in the genome. In fact, the more
important the motif is in terms of the number of
genes it controls, the worse it scores by this
measure.

The new measure, which we call group speci-
®city, does not have this drawback. It serves as a
powerful adjunct to the MAP score in that it takes
into account the sequence of the entire genome and
highlights those motifs that are found preferen-
tially in association with the genes under consider-
ation. Cutoffs based on group speci®city serve
to eliminate motifs that correspond to sequence
features that are over-represented throughout the
genome. It provides better balance between motifs
with many genomic sites and motifs with fewer
sites, since it is only a measure of the degree to
which the distribution of sites is skewed toward
the input set, the greater total number of sites is
not as much of an advantage.
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Motif clustering

Many examples of identical or very similar
motifs were generated by AlignACE. This occurs
when the same motif is found from AlignACE
runs on overlapping or related groups of ORFs
and also when multiple, similar examples of a very
strong motif are returned from a single AlignACE
run. The latter case is caused by the iterative mask-
ing procedure used to ®nd multiple motifs (see
Methods).

To automatically group very similar motifs
together, we needed a computational measure for
motif similarity. While many established tools exist
for comparing one sequence with another sequence
(Altschul et al., 1990) or one sequence with an
alignment of many sequences (Berg & von Hippel,
1987), methods for comparing two sequence align-
ments in a way appropriate to the short DNA
motifs here are considerably less well developed.
We previously devised and used one algorithm for
this purpose (Roth et al, 1998). A modi®ed and
simpler algorithm is used here, which we name
CompareACE. A hierarchical clustering technique
based on CompareACE was developed and used
to group similar motifs (see Methods).

Highly group-specific motifs

In order to present only the strongest of the
great number of motifs found, we chose a MAP
score cutoff of 10.0, which reduced the set of motifs
under consideration to 1234. While largely arbi-
trary, this threshold did not lead to the rejection of
any of the best examples of known cis-regulatory
elements. To focus on the most selective motifs, a
cutoff of 10ÿ10 for the group speci®city score was
chosen. A total of 54 highly speci®c motifs ful®lled
both criteria and were grouped into 25 distinct
motif clusters. Figure 1 lists a representative motif
from each of the motif clusters along with its corre-
sponding MAP, group speci®city, and positional
bias scores. If the motif has been identi®ed with
the binding preferences of a known transcription
factor, that is also indicated. Otherwise, a short
description is given of the group of genes upstream
of which the motif was found.

Known motifs

Assignment of AlignACE motifs to known cis-
regulatory elements from the literature is an ideal
application for CompareACE. This algorithm was
not used in this case, however, because databases
of known transcription factor binding sites are still
incomplete with respect to what is known in the
literature. The main criterion used to identify an
AlignACE motif as a known cis-regulatory element
was that the AlignACE motif matched the litera-
ture consensus and was found upstream of an
appropriate set of genes. For motifs with numerous
annotated, well-de®ned binding sites, this criterion
allowed us to easily make the assignment. In cases
involving very few known sites, the criterion used
was whether the top genomic sites for the
AlignACE motif included a signi®cant fraction of
the sites veri®ed in the literature. We were able to
identify the following 16 known motifs from
among the 25 highly speci®c motif clusters: Rap1p,
Gcn4p, the heat shock element (HSE), the Cbf1p-
Met4p-Met28p complex, the Hap2p-Hap3p-Hap4p
complex, Lys14p, the MluI cell-cycle box (MCB),
the stress response element (STRE), the Met21p-
Met32p complex, Leu3p, Oaf1p, the carbon source
responsive element (CSRE), Pho4p, Ste12p, and
Pdr3p (Svetlov & Cooper, 1995; Warner, 1989;
Lundin et al., 1994; Martinez-Pastor et al., 1996;
Blaiseau et al., 1997; Fisher & Goding, 1992; Becker
et al., 1998; McIntosh, 1993; Karpichev et al., 1997;
Caspary et al., 1997; Baur et al., 1997; Delahodde
et al., 1995). Known real motifs found with slightly
lower group speci®city scores include Aft1p,
Ga14p, the early cell-cycle box (ECB), and the cell-
cycle activation (CCA) (not shown in Figure 1)
(Yamaguchi-Iwai et al., 1996; Lohr et al., 1995;
McInerny et al., 1997; Freeman et al., 1992). The
given names correspond either to the known tran-
scription factor or to an acronym corresponding to
the motif's function. Among those motif clusters
that were not identi®ed with known transcription
factors, we were generally unable to ®nd infor-
mation to indicate a possible cellular function. In
most assignments the motif found by AlignACE
matched very closely the literature motif, but two
exceptions are worth noting as they illustrate
different interpretation issues with AlignACE
motifs.

The ®rst exception involves the assignment to
the STRE of motif cluster S13, which contains
motifs from carbohydrate utilization categories.
The consensus binding site for the STRE is
AGGGG (Martinez-Pastor et al., 1996). The motifs
in this cluster are very G-rich, but include more
columns of information than are in this simple con-
sensus. This may indicate that the literature con-
sensus has ignored information in the ¯anking
regions of the motif, or it may indicate that
AlignACE has chosen an alignment in which the
motif has been overspeci®ed.

Another dif®cult assignment was motif cluster
S16, which was derived from a group of genes
involved in peroxisomal organization. The motif
identi®ed by AlignACE is a superposition of a
half-site of the oleate response element (ORE) and
the multifunctional URS1 consensus CGGCGGC
(Karpichev et al., 1997; Gailus-Durner et al., 1997).
It therefore demonstrates two possible ways in
which AlignACE can fail to ®nd the appropriate
motif. The ORE is de®ned in the literature as two
near palindromic half-sites separated by a 17-bp or
18 bp spacer. The AlignACE alignment, however,
only matched one half-site. AlignACE is designed
to look for compact sites and so penalizes sites that
are diffuse. This penalty is not so great as to pre-
clude its ®nding the Ga14p binding site, a CGG
inverted repeat separated by 11 bp. It is possible



Figure 1. Motifs ranked by speci®city score. For each cluster, the statistics for the motif member with the best (low-
est) speci®city score are listed. The second, third, and fourth columns correspond to the MAP, group speci®city, and
positional bias scores, respectively. The ®fth column is the number of base-pairs upstream of the translational start
site that the center of the most enriched 50 bp window is found (see Methods). The sixth column is a sequence logo
representation of the motif (Schneider & Stephens, 1990). An algorithm for determining a unique orientation for each
motif was developed and applied (see Methods). The last column lists the common name or the binding factor for
the motif, if known. Otherwise a short description is given of the group of genes upstream of which the motif was
found.
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that in this case the 17 bp spacer incurred too great
a penalty for the full site to be considered signi®-
cant, that the variability in the length of the spacer
prevented alignment of the full site, or that the
sampling was not suf®ciently extensive for even a
strong motif to be found from among the large
sample space of motifs with 17 bp spacers. The
alignment was further complicated by the presence
of a few sites that were perfect matches to the
URS1 consensus, which is very similar to the ORE
half-site. It is not known whether these are func-
tional URS1 sites. Nevertheless, although this motif
does not directly correspond to the binding prefer-
ences for any one transcription factor, and the
aligned sites seem to match the binding prefer-
ences for either of two different factors, it is
encouraging that the sites aligned by AlignACE
largely correspond to functional control elements
in the cases where the upstream regions in ques-
tion have been studied.

Unknown motifs

Three highly speci®c motifs were found to be
associated with ribosomal proteins. One of these,
the Rap1p motif, is well known. The other two are
motifs S7 and S11, which are primarily associated
with small and large ribosomal subunits, respect-
ively. These ®ndings are especially interesting
since the transcriptional regulation of a number of
ribosomal proteins has been studied in detail, and
the known Rap1p and Abf1p sites, along with a
T-rich region, are generally found to be suf®cient
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to explain their transcriptional control (Warner,
1989; Goncalves et al., 1995).

The second motif listed in Figure 1 has an extre-
mely well-conserved consensus and is very speci®c
for genes coding for proteasome subunits. The
motif also shows a great deal of positional bias,
with the most signi®cant enrichment occurring
between approximately ÿ50 and ÿ200 bp relative
to the translational start. The top 100 genes ranked
by the strength of their best site in this upstream
window include 31 proteasome subunits, ®ve ubi-
quitin-related genes, ®ve chaperonin genes, two
mitochrondrial proteases, and three nuclear trans-
port genes. The corresponding binding factor for
this motif has recently been identi®ed as Rpn4p
(Mannhaupt et al., 1999). This result has been inde-
pendently veri®ed in our lab using a one-hybrid
selection with con®rmation by mRNA expression
analysis of Rpn4p knockout and overexpressing
strains.

Cluster S12 contains a motif that to our knowl-
edge has not been noted in the literature. It is very
speci®c for genes involved in rRNA processing,
and it demonstrates strong positional bias, prefer-
ring sites between approximately ÿ50 and ÿ200 bp
upstream of the translational start. We refer to this
motif as RRPE, which stands for ribosomal RNA
processing element.

Many other unknown motifs were found. See
the web site (http://arep.med.harvard.edu/) for a
complete current list of all known and unknown
motifs found by AlignACE.
Figure 2. Motifs ranked by positional bias score. For each
(lowest) positional bias score are listed. See the legend to Fig
Positionally biased motifs

To focus on the most positionally biased motifs,
a MAP score cutoff of 10.0 was again applied, fol-
lowed by a positional bias score cutoff of 10ÿ8. The
448 motifs passing these criteria demonstrated
great redundancy and were separated into only 17
distinct clusters (see Figure 2).

The vast majority of these motifs are homopoly-
meric A-rich sequences, which are commonly
found despite the fact that AlignACE corrects for
the 62 % A � T content of the yeast genome. These
are generally the strongest motifs found in a search
of any selection of upstream regions in yeast, and
they demonstrate strong positional bias toward
locations between about ÿ50 and ÿ150 relative to
the translational start. The only known transcrip-
tion factor that binds such sequences is Datin,
which has been observed to act both as an activa-
tor and as a repressor (Moreira et al., 1998). Such
sites have also been observed to exert transcrip-
tional effects that are consistent with their
sequence-speci®c structural properties (Iyer &
Struhl, 1995).

Other motifs found here include AT-repeat and
GT-repeat motifs, Rap1p, Reb1p, Abf1p, Rpn4p,
the MCB element and two unknown motifs that
were also ranked highly in terms of speci®city
(Svetlov & Cooper, 1995). These two distinct
unknown motifs were found to be positionally
biased and speci®c for rRNA and tRNA synthesis
and processing. One is the RRPE motif discussed
cluster, the statistics for the motif member with the best
ure 1 for details.
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above, and the other is a motif with consensus
GATGAG that has been noted before. It was
named the polymerase A and C box (PAC box)
because of its association with polymerase A and
C subunits (Dequard-Chablat et al., 1991), but as
yet, neither a function nor a trans-acting factor for
this motif has been identi®ed.

Negative controls: motifs found from searches
upstream of randomly chosen sets of ORFs

We ran AlignACE on 50 each of randomly cho-
sen sets of 20, 40, 60, 80 and 100 ORFs. Varying
MAP score and group speci®city cutoffs were
applied as in the functional categories, and motif
clustering was performed (see Table 1 for a com-
parison of results). Runs of AlignACE on the
upstream regions of genes in functional categories
did result in higher-scoring motifs overall. There
were a number of motifs from the randomly cho-
sen sets of ORFs, however, that scored well within
the range of some real motifs from the functional
category runs. Inspection of the best of these motifs
showed no indication that any of them might cor-
respond to motifs noted in the literature.

If one considers these motifs to represent the
background noise inherent in this method, then
Table 1 may be used to choose cutoffs with pre-
scribed false positive rates. Accordingly, four-®fths
of the motifs listed in Figure 1 should correspond
to a real signal above that background. In cases in
which one searches upstream of genes that are
known to be controlled by a common transcription
factor, the false positive rates estimated in this
manner are likely too high. Greater credence
would be given to any motif speci®c to a coregu-
lated group of genes as opposed to a motif speci®c
to a randomly chosen group of genes.

The group speci®city statistic can be modi®ed to
compare a motif's targets against a set of genes
other than that used to ®nd the motif. We refer to a
statistic measuring the speci®city of a motif for
some different group of genes as cross-speci®city.
Using this measure, 82 motifs from the AlignACE
Table 1. Comparison between AlignACE runs on upstream
chosen sets of ORFs

Random groupings motifs

Spec. score cutoff MAP > 0 MAP >

1 3692(1063) 1792(20
10ÿ1 2766(1038) 1047(20
10ÿ2 2026(978) 553(18
10ÿ3 1416(831) 285(14
10ÿ4 935(641) 151(10
10ÿ5 554(425) 72(56
10ÿ6 329(290) 31(29
10ÿ7 151(143) 15(15
10ÿ8 60(59) 9(9)
10ÿ9 37(36) 6(6)
10ÿ10 14(14) 5(5)

Columns 2-5 list the numbers of motifs found from random grou
than the cutoff listed in the ®rst column and MAP scores greater th
dent motif clusters is listed in parentheses.
runs on randomly selected groups of ORFs are
found to have cross-speci®cities of less than 10ÿ8 for
one or more functional categories. This is despite
the fact that no randomly chosen set of ORFs
included more than ®ve members of any of the
smaller functional categories (those having less than
50 ORFs) or 10 % of the members of any of the lar-
ger functional categories (those having 50 or more
ORFs). All of these motifs correspond to one of the
following: Rap1p, Rpn4p, PAC box, RRPE and
ECB. There were numerous matches to each of the
®rst four motifs, but only one match to the ECB
motif. By comparison, no motif found from any
functional category had a cross-speci®city of less
than 10ÿ5 to any of the randomly chosen ORF sets.

The most positionally-biased motifs found in the
negative controls are very similar to those found
analogously in the functional groups analysis
(Figure 2). These include Abf1p, Reb1p, Rap1p, the
PAC box and RRPE. The only novel motif was
derived from amino acid repeats in the coding
regions of two proteins found very nearby or over-
lapping one of the randomly chosen ORFs. Many
of the motifs found by this method correspond to
known real motifs, though no biological infor-
mation beyond the genome sequence and pre-
dicted translation start sites was used to ®nd them.

Positive controls: motifs from searches
upstream of genes with known transcription
factor binding sites

Groups of genes controlled by known transcrip-
tion factors were used for the positive controls
(Zhu & Zhang, 1999). Only 29 factors having ®ve
or more unique reported binding sites were con-
sidered. AlignACE was used as above to search for
motifs upstream of the reportedly controlled genes,
and the resulting alignments were checked for the
presence of the sites cited in the literature. A motif
was considered a match if it contained half or
more of the literature sites in its alignment or if
half or more of the aligned sites were cited in the
literature. An alignment corresponding to the lit-
regions of ORFs in functional categories and randomly

Functional category motifs

10 MAP > 0 MAP > 10

5) 3311(1324) 1234(208)
2) 2713(1284) 815(194)
1) 2198(1201) 530(179)
9) 1622(1016) 337(153)
4) 1109(753) 226(121)
) 750(543) 160(90)
) 446(329) 122(67)
) 270(199) 91(47)

164(118) 73(35)
97(62) 60(28)
69(38) 54(25)

ps and functional categories having group speci®city scores less
an that listed in the column headings. The number of indepen-
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erature motif was found in 21 of the 29 test cases.
Of the eight that were not found here, ®ve were
found in appropriate functional category runs.
Therefore it is likely that many of the false nega-
tives are the result of the limited number of true
sites in the small input sequence sets. In any case,
the false negative rate is no more than 30 %, and
with appropriate input data might be much lower.

Discussion

We present a set of analytical tools for the com-
putational discovery and validation of cis-acting
regulatory elements in a sequenced and annotated
genome.

The group speci®city score is a useful statistic for
gauging whether a given motif is real in the sense
that it describes a sequence feature that is function-
ally relevant for the genes under consideration. This
measure is independent of the method being used
to ®nd motifs. It works as long as there is a method
of ranking potentially regulated gene targets and
could therefore serve as an independent measure
by which to judge the performance of different
motif-®nding algorithms. Alternatively, different
methods of grouping genes could be rated by the
ability of those groupings to lead to the discovery
of very self-speci®c motifs. The group speci®city
score also might serve as a new basis on which to
design improved motif-®nding algorithms.

The observation that some real motifs are prefer-
entially located in certain distance ranges upstream
of translational start sites is intriguing. The most
positionally biased motifs tend to have sites cen-
tered around positions between ÿ100 and ÿ150
relative to translational start. Since the 50 UTRs in
S. cerevisiae are very short, this could indicate that
a precise positioning relative to the transcriptional
start site is necessary for the function of these
motifs. Alternatively, since some of these motifs
regulate the transcription of multiprotein com-
plexes, one possible explanation for their precise
positioning is that nearly identical modes of tran-
scriptional induction and translational ef®ciency
are required for the stoichiometric production of
the protein subunits. The fact that there are many
motifs that do not demonstrate this property
implies that the reason for this positional bias,
whatever it may be, is not a property of all tran-
scription factor binding sites.

The method presented here is applicable to
groups of genes other than functional categories.
Possibilities include clusters of genes sharing com-
mon expression pro®les across different conditions,
sets of genes sharing a common phenotype, and
genes coding for interacting proteins. With the
advent of high-throughput technologies, in many
cases it is becoming possible to obtain these types
of information on a whole-genome basis with only
one or a few experiments. Furthermore, although
the S. cerevisiae genome with its compact upstream
regions and independently transcribed genes
seems ideal for the approach used here to ®nd
motifs, it may prove applicable to many other
organisms. AlignACE has already proven useful in
bacterial genomes (McGuire et al., unpublished
results), though some distinct challenges will be
encountered as it is applied to larger eukaryotic
organisms. As new technologies generate great
quantities of data concerning organisms about
which little is known, the methods presented here,
perhaps in the context of a more general model of
genetic networks, could help to piece together
much of the functionality of these organisms.

The analysis performed here will also form the
starting point for a database of information about
known and hypothetical sequence control features
in S. cerevisiae and other organisms. Not only will
researchers be able to use these tools to determine
the most likely potential regulatory sequences
for the genes they are studying, but they will be
able to quickly determine whether the resulting
hypothetical motifs are similar to any known or
already suspected motifs.

Methods

AlignACE

AlignACE is an algorithm implemented in C � � for
®nding multiple motifs in any given set of DNA input
sequences. We de®ne a motif as the characteristic base-
frequency patterns of the most information-rich columns
of a set of aligned sites. AlignACE is based on a Gibbs
sampling algorithm previously used to ®nd motifs in
protein sequences (Neuwald et al., 1995; Lawrence et al.,
1993; Liu et al., 1995). It differs from this method in the
following ways: (1) the motif model was changed so that
the base frequencies for non-site sequence was ®xed
according to the source genome (62 % A � T in the case
of S. cerevisiae). (2) Both strands of the input sequence
are simultaneously considered at each step of the algor-
ithm. Overlapping sites are not allowed even if the sites
are on opposite strands. (3) Simultaneous multiple motif
searching was replaced by an approach in which single
motifs were found and iteratively masked. The masking
is done by determining the most information-rich col-
umn in each motif, mapping that column back to the
input sequences, and placing a marker at each of those
positions. The sampler is then reinitialized to ®nd
another motif with the stipulation that no sites that con-
tain a masking marker may be resampled. Such sites
may, however, be added to any found motif at the end
of sampling so that the AlignACE output includes all rel-
evant sites for each output motif. In the case of a very
strong motif, it is possible for the motif to have one of its
positions masked and yet still retain enough information
in its other positions for a variant of the original motif to
be found. We refer to these as mask variants. (4) The
near-optimum sampling method used by AlignACE is
different from that used by Neuwald et al. (1995). The
MAP score is now the criterion on which the ®nal output
motif is based (see below).

AlignACE accepts input either as a FASTA-formatted
sequence ®le, or as a list of ORF names, along with an
SGD ORF table and a FASTA-formatted genome
sequence. In the latter case, AlignACE will take sequence
upstream of the translational starts of the listed ORFs for
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motif searching. The translational start site is used as a
proxy for the transcriptional start site, since the latter is
dif®cult to determine computationally. The amount of
sequence to be taken is speci®ed by parameters such that
at least a minimum amount of sequence is taken (default
300 bp) and as much as a maximum amount is taken
(default 600 bp) so long as sequence belonging to other
ORFs, transfer RNAs (tRNAs), small nuclear (snRNAs)
and transposons are not included. In the case that some
ORF overlaps an ORF of interest including part of its
upstream region, the presence of that ORF is ignored. It
is assumed that only one of such pairs of overlapping
ORFs in S. cerevisiae is real.

Since a number of upstream regions in S. cerevisiae are
nearly identical, AlignACE also includes the option to
purge very similar input sequence before sampling.
A Smith-Waterman algorithm (Smith & Waterman, 1981)
is used to ®nd such sets of repeated input sequences, all
but one of which are then removed from consideration.
The cutoffs used for this are such that at least 60 %
sequence identity is required for a sequence to be purged.

All results generated for this work used version 2.1 of
AlignACE. The only non-default options used were ÿy
(automatic selection of upstream regions) and ÿe (pur-
ging of input sequences based on Smith-Waterman com-
parisons).

MAP score

The MAP (maximum a priori log likelihood) score is
used by AlignACE to judge different motifs sampled
during the course of the algorithm. A crude, but useful
approximation is given by the formula N log R, where N
is the number of aligned sites and R is the degree of over-
representation of the motif in the input sequence. In other
words, if a site matching a given motif is expected to
occur once every kilobase according to background geno-
mic mononucleotide frequencies, and ten sites are
observed in 2 kb of input sequence, then R � 5.
A detailed development of the formula is given by Liu
et al. (1995).

The general properties of MAP score can be summar-
ized by stating that all of the following lead to higher
scores for otherwise similar motifs: (1) greater numbers
of aligned sites; (2) more tightly conserved motifs; (3)
less total input sequence; (4) more tightly packed infor-
mation-rich positions; and (5) enrichment of the motif
with nucleotides that are less prevalent in the genome.

ScanACE

ScanACE is a program written in C � � that searches
a genome for close matches to a motif found by
AlignACE. The scoring method used is identical with
that used by AlignACE to sample sites. Speci®cally, the
score S for a site Q whose sequence as a function of pos-
ition is given by q(p) is:
where the matrix M is calculated as:
Here Fp,b is the number of bases of type b aligned at
position p, N is the number of aligned sites, and pb is the
genomic background nucleotide frequency for base b.
The ®rst term in the second equation above corresponds
to the log of the frequency of a given base at a particular
position in the motif alignment, estimated with a Baye-
sian prior distribution corresponding to the genomic
mononucleotide frequencies and a total pseudocount of
1, as is the default for AlignACE.

ScanACE can be set to return all genomic sites scoring
better than a cutoff based on the mean and standard
deviation of the scores of the aligned sites, or it can
return a given number of best sites. The positions of the
sites are returned along with information concerning
neighboring genomic features according to the tables of
ORFs and other features it is given. This information
may then be used to generate the necessary data for cal-
culating group speci®city and positional bias scores.

Group specificity

The group speci®city score is a measure of how well a
given motif targets the genes whose upstream regions
were used to ®nd it. For each motif, ScanACE output is
used to rank all ORFs according to the strength of the
site best matching the scoring matrix in each ORFs 50
upstream non-coding region between ÿ100 and ÿ500 bp
relative to translation start. The top 100 ORFs in this list
are compared to the genes in the group used to ®nd the
motif. More than 100 ORFs are included in the target list
if there are ties according to the ranking criteria. The
probability that these sets would have the observed
intersection or greater is calculated. This probability is
what we refer to as the group speci®city score. It is
given by the formula:
where N is the total number of ORFs (6226 at the time
of these calculations), s1 and s2 are the numbers of ORFs
in the group used to ®nd the motif and in the list of tar-
get genes, respectively, and x is the number of ORFs in
the intersection of the two lists. Each term of this sum
represents the probability of having obtained an intersec-
tion of i ORFs assuming a random sampling of the two
sets of ORFs being compared. The sum S is then the
probability of observing this intersection or greater. This
is the statistic we use to quantify the degree to which a
motif is speci®c to the ORFs from which it was found. If
the assignment of sites to ORFs was not as straightfor-
ward or if it was believed that the occurrence of multiple
sites for a given ORF was very signi®cant, it would be
possible to modify this statistic to instead consider speci-
®city between the genomic sites in the input sequence
set and the top target sites in the genome. This is the
method used by McGuire et al. (unpublished results).
Other variations are also possible.

Positional bias

A statistic to measure positional bias was constructed
as follows. The 200 best sites in the genome for a given
motif are found and their positions relative to the trans-
lational start sites of the nearest ORFs are extracted from
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the ScanACE output. More than 200 genomic sites are
considered if many equally good sites are tied in the
ranking for the 200th best. Among these sites, t are
found within 600 bp upstream of some ORF. The 50 bp
window containing the greatest number, m, of these t
sites is considered further. The probability of observing
m or more sites out of a possible t in a 50 bp window of
a 600 bp region is determined by the formula:
where w � 50 and s � 600. To make the expected distri-
bution of randomly chosen sites as ¯at as possible, the
presence of sites inside coding regions is ignored. That
is, if a site is inside some ORF and yet is also 450 bp
upstream of some other ORF, it is counted as occurring
at ÿ450 relative to a start site. The only deviations from
this presumed ¯at background occur when a complete
ORF is contained within the 600 bp upstream region of
another ORF. This happens for 261 ORFs (4 %).

Since a sliding window of 50 bp is being considered,
the expected distribution of scores for a randomly chosen
site distribution is itself not ¯at. To determine what
threshold score should be considered signi®cant, sample
distributions of sites were randomly generated. Out of
100 sets of 200 randomly selected sites in a 600 bp range,
only two scored better than 10ÿ3 and one better than
10ÿ4 by this statistic. Over one-third of the motifs con-
sidered in this study passed a cutoff of 10ÿ8, indicating a
very signi®cant degree of positional bias.

CompareACE

To compare motifs, we chose a scoring method based
on the Pearson correlation coef®cient between the
nucleotide base frequencies of two motif alignments
(Pietrokovski, 1996). We decided to consider only align-
ments that contained at least the most informative six
positions of each motif. This precludes the possibility of
high scores resulting from alignments involving only the
weak regions of motifs. The region of alignment is
allowed to be as wide as necessary to accommodate
these positions for each motif, but is made no wider.
Positions of unknown sequence are modeled as being
25 % each A, C, G and T. The ®nal score is the maximum
value of the correlation coef®cient over the space of all
allowable alignments. This score varies between ÿ1 and
1, and approaches 1 for a perfect match between motifs.
We have named this algorithm CompareACE by analogy
to the related tools ScanACE and AlignACE.

Motif clustering

The speci®c method used was the simple joining
algorithm (Hartigan, 1975) in which comparisons
between groups of motifs are done by averaging all of
the CompareACE scores between relevant pairs of
motifs. The purpose of the clustering in this case was not
to highlight distant relationships, but rather to automati-
cally group identical motifs. A cutoff score of 0.7 was
used to de®ne the cluster boundaries. The clusters were
largely insensitive to cutoffs in the range of 0.6 to 0.9.
Orienting motifs

Since DNA sequences can be read in either of two
ways, for consistency we designed a method of orienting
motifs. The information-weighted nucleotide base con-
tent of the motif is calculated, with values IA, IC, IG, and
IT. The function 1.5(IG) � IA ÿ IT ÿ 1.5(IC) is evaluated,
and the motifs are orientated so that this value is posi-
tive. As a result, purine residues are preferentially dis-
played, and G � T-rich motifs are displayed instead of
A � C-rich motifs.
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