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The parameters required for an effective assembly depend on 
the depth of coverage. For de Bruijn graph assemblers such as 
ABySS16,17, which process each read into a set of overlapping sub-
strings (k-mers) of length k base pairs (bp), the most important 
parameter is the k-mer length. Whole-genome shotgun assembly 
sequencing libraries attempt to provide a uniform representation 
of the genome. For these libraries it is reasonable to identify and 
work with the assembly that corresponds to an optimal k value. In 
non-normalized transcriptome shotgun libraries, however, indi-
vidual transcripts differ widely in expression and thus present a 
wide range of sequence representations to an assembler. A single 
k value is therefore unlikely to yield an optimal overall assembly 
(Supplementary Note 1).

Recently, we applied the ABySS short-read assembler to human 
transcriptome data18. Based on an assembly for a single k value, 
in this preliminary analysis we had identified contig structures 
and alignments that are consistent with alternative isoforms, and 
thus suggested that ABySS could be effective for transcriptome 
analysis. However, to make de novo assembly practical for charac-
terizing annotated and new transcript structures, we anticipated 
that it would be necessary to assemble at different k values to 
address variable transcript expression and multiple expressed iso-
forms. Here we describe the result of work to address these issues, 
Trans-ABySS, a method and pipeline for assembly and analysis of 
non-normalized short-read transcriptome data.

To develop the approach and assess its performance, we generated 
147.1 million (7.36 gigabases (Gb)) quality-filtered 50-bp Illumina 
paired-end reads from a transcriptome library constructed from 
adult mouse liver poly(A) RNA. We chose this model organism 
because it has a well-annotated transcriptome and is considered 
genetically uniform. We assembled the reads using ABySS v1.1.1 
(Supplementary Fig. 1 and Supplementary Note 1).

To assess assembly performance as a function of k values, 
we compared assemblies of the 147.1 million reads for k values 
ranging from 26 to 50 bp. The number of contigs generated in 
an assembly ranged from 2.57 million (k = 26 bp) to 0.14 million 
(k = 50 bp). Each assembly was dominated by shorter contigs; 
the fraction of contigs shorter than 100 bp varied from 94.2% 
for k = 26 bp to 31.9% for k = 50 bp. Assembly N50 values, the 
contig lengths for which 50% of the sequence in an assembly is 
in contigs of this size or larger, were highest for intermediate  
k values, with a maximum of 1,458 bp at k = 39 bp (Supplementary 
Fig. 2). We focused our analysis on the contigs that were at 
least 2(k − 1) bp because k − 1 bp is the required k-mer over-
lap for extending contigs during assembly, and 2(k − 1) bp is 
the expected length for contigs that represent alternative splice 
junctions. Thus, we considered this contig size range to be the 
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Current methods for sequencing transcriptomes using short-
read technologies (RNA-seq) generate millions of short sequence 
reads. These reads are associated with transcript models after 
mapping the reads to a reference genome, facilitated by extend-
ing the genome sequence to include sequences for junctions 
between annotated exons1, as in alternative expression analysis 
by sequencing (ALEXA-seq)2, or by using a spliced-read align-
ment algorithm3–7. Recently, two methods have been reported 
that use the latter approach to generate gene models and pre-
dict isoforms from aligned reads8,9. Read alignments, however, 
are subject to bias resulting from reads mapping to multiple 
locations10,11 and mismatches caused by genome variation12–14. 
When de novo assembly is applied to short-read transcriptome 
data, longer assembled contigs, rather than reads, are aligned 
to a reference genome, and contig alignments can be com-
pared to transcript annotations to identify new transcripts and 
new transcript structures. Such an approach has the advan-
tage of requiring no prior knowledge of exon-exon junctions;  
in addition, de novo assembly can be used when a reference 
genome is unavailable or is poorly annotated15.
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most informative for each assembly19 (Supplementary Fig. 1c,  
Supplementary Note 1 and Online Methods).

To allow comparing de novo assemblies to methods based 
on ungapped read alignments, we used the Burrows-Wheeler 
aligner20 to map the reads to the mouse reference genome and 
known exon-exon junctions. Of 136.7 million aligned reads  
(6.83 Gb), we retained 118.7 million (5.93 Gb) that had a mapping  
quality of at least 10 (such reads mapped to unique genomic loca-
tions with alignments whose probabilities of being incorrect were 
≤0.1)20. Of the retained reads, 77% aligned to exons and exon-
exon junctions, indicating that the dataset was of high quality 
(Supplementary Table 1 and Supplementary Fig. 3).

We used the exonerate aligner19 to map the contigs to the 
reference genome and assessed transcript representation by 
aligned contigs as a function of normalized read depth from 
Burrows-Wheeler aligner read alignments to Ensembl21 tran-
script models. Of the 34,400 transcripts that had an average 
read coverage of at least 20×, 72% were represented by a sin-
gle contig whose alignment overlapped at least 80% of the 
transcript’s total exon length (Supplementary Fig. 4). When 
we assessed transcript coverage from individual assemblies, 
we observed that transcripts with lower read depths were rep-
resented more effectively with lower k values, whereas those 
with higher read depth were represented more effectively with 
higher k values (Fig. 1a). Hence, assembly across a range of  
k values is required to recover contigs that represent transcripts 
with very different expression levels. We retained assemblies 
for k values of 26–50 bp. Because this generated a large number 
of contigs, 9.50 million of which had lengths (L) ≥ (2k − 2) bp,  
before analysis we merged contigs from independent assemblies, 
achieving a smaller nonredundant set that contained 1.20 million 
contigs with L ≥ (2k − 2) bp (Fig. 1b and Supplementary Fig. 5). 
Finally, we removed contigs that were unlikely to convey infor-
mation on transcript structure by filtering the merged contig set, 
without referring to the mouse genome or transcript annotations 
(Online Methods); eliminating shorter contigs that were unlikely 
to represent alternative splice junctions or that were likely to rep-
resent genomic or intronic sequence generated a filtered set that 
contained 0.76 million contigs with L ≥ (2k − 2) bp.

We then assessed the alignments of filtered contigs relative to 
annotated transcript structures. Because contig alignment errors 
can generate false positive new transcript structures, we also 
aligned the contigs using BLAST-like alignment tool (BLAT)22 and  
retained only candidate transcript structures that were supported 
by both aligners. Of the 762,486 contigs longer than (2k − 2) bp, 
578,140 (76%) had at least one alignment block overlapping an exon 
from at least one of University of California Santa Cruz (UCSC) 

genome browser23, RefSeq24, Ensembl21 or AceView25 transcript 
models, representing a total of 16,204 annotated genes.

We compared our de novo assembly results to reference-based 
assembly, using Cufflinks9 and Scripture8, two recent methods that 
use the output of the gapped read aligner TopHat6 to reconstruct 
gene models. Considering Ensembl transcripts with a fractional exon 
coverage by a single contig of at least 0.8, Cufflinks was more effective 
in generating exon coverage for read coverage depths below ~10×, 
Trans-ABySS was more effective above this depth, and Scripture gen-
erated lower exon coverage than either of these methods (Fig. 2a, 
Supplementary Fig. 6, Supplementary Table 2 and Supplementary 
Note 1). Cufflinks and Trans-ABySS reported comparable total num-
bers of transcripts (11,516 and 11,253 transcripts, respectively) but 
Scripture reported fewer (9,214 transcripts).

We used a large set of annotated exon-intron boundaries to 
compare the sensitivity and specificity of TopHat read align-
ments, Cufflinks and Scripture contigs, and Trans-ABySS contig 
alignments (Fig. 2b). Our reference was the 298,893 nonredun-
dant annotated introns generated by pooling all UCSC genome 
browser, RefSeq, Ensembl and AceView transcript models. 
Tophat’s specificity was highest (0.940) for introns with 15–40 
gapped reads of support. Scripture showed relatively low specifi-
city. Both Cufflinks (0.948) and Trans-ABySS (0.945, 0.959 with 
splice-site filtering; Supplementary Fig. 7) were more specific 
than Tophat. Sensitivities for Cufflinks and Trans-ABySS were 
similar to Tophat’s for introns with two and one gapped read(s) 
of support, respectively. Note that introns reported as nonspecific 
may include both false positives and bona fide introns that were 
not included in the reference intron set. These results indicate that 
when variable transcript expression levels and multiple expressed 
isoforms are addressed, de novo assembly offers a high sensitivity 
and specificity for identifying transcript structures.

We then assessed the new structures identified by Trans-ABySS 
contig alignments. Comparing contig alignments to four sets of 
transcript models (Supplementary Fig. 8 and Online Methods), 
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Figure 1 | Representation of transcripts and contigs across assemblies. 
(a) Distributions of normalized mean transcript coverage from read-to-
genome alignments and assembly k-mer length, for unmerged contigs from 
assemblies for every other k value between 26 and 50 bp (left to right, with 
the curve for each k value in a different color). Results are shown for all 
Ensembl v54 mouse transcripts (gray), and for contigs that cover at least 
80% of the transcript’s total exon length. Inset, distribution of transcripts 
for each each k value. (b) Result of contig merging for main contigs from 
assemblies with k values of 26–50 bp. ‘Buried’ contigs are those with an 
exact sequence match within a longer ‘parent’ contig from another assembly. 
‘Untouched’ contigs have no sequence match in another assembly.

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



nature methods  |  VOL.7  NO.11  |  NOVEMBER 2010  |  911

brief communications

we identified 866 candidate new events corresponding to anno-
tated loci (Supplementary Table 3). These consisted of 94 new 
exons, 117 skipped exons, 56 new introns, 293 retained introns, 
184 alternative 3′ or 5′ exon splicing events, and 122 new untrans-
lated regions (UTRs). Representative examples of some of these 
event types are shown in Supplementary Figures 9–13. We noted 
that contig alignments could predict new events that were too 
short to be detected by ungapped alignments of the 50-bp reads 
(Supplementary Fig. 9). Retained introns were the most frequent 
new structure. The majority of the genes with such candidates 
were highly expressed (Supplementary Fig. 14), suggesting that 
some of these events may represent incomplete splicing26, with 
the unprocessed introns having sufficient read representation to 
assemble into contigs. The pipeline supports filtering such struc-
tures using the mean read coverage for the flanking exons and the 
ratio of the mean coverage of the flanking exons to that for the 
predicted retained intron (Supplementary Fig. 15).

We developed a contig-based method for detecting poly
adenylation sites using reads that aligned at junctions of a tran-
script and a poly(A) tail27, and mate-pair reads with one mate 
within a transcript’s poly(A) tail (Supplementary Fig. 16 and 
Supplementary Note 1). The method can be used with or without 
an annotated reference genome. We confirmed known polyade-
nylation start sites in 1,299 annotated transcripts, and inferred 
84 new polyadenylation sites that corresponded to 56 new short 
3′ UTRs and 32 new long 3′ UTRs (Supplementary Table 4 and 
Supplementary Fig. 17).

We anticipated that normal mouse liver tissue would have no 
fusion genes but note that the pipeline includes an algorithm for 
detecting such chimeric transcripts (Supplementary Fig. 18 and 
Supplementary Note 1). We used this algorithm to identify vali-
dated translocations in short-read transcriptome data for human 
non-Hodgkin lymphomas (data not shown).

The pipeline also includes a gene-level expression metric based 
on reads aligned to contigs that can be used with or without an 
annotated reference genome. To assess this metric, we showed 

that gene-level expression estimates for 
aligned Trans-ABySS contigs were com-
parable to those from ALEXA-seq2 read 
alignments (Supplementary Fig. 19 and 
Supplementary Note 1). For the 8,190 
genes with fractional contig-to-exon cov-
erage of at least 0.8, Trans-ABySS and 
ALEXA-seq expression estimates had a 
Pearson’s correlation coefficient of 0.921.

We note that identifying new struc-
tures efficiently requires accurate align-
ments of de novo contigs to a genome 
assembly, and improvements in this area 
will depend on developing more effec-
tive alignment approaches. Several other 
issues remain challenging for both de novo 
and reference-based methods, such as 
repetitive regions, nonuniform local read 
densities and complete isoform recon-
struction (Supplementary Note 1).

For species that lack reference 
genome sequences, or whose genomes 
are poorly annotated, de novo short-

read transcriptome assembly may be a practical alternative 
to conventional expressed sequence tag–based approaches 
and to methods that depend on short-read alignments. 
For example, with sequencing technologies becoming less  
expensive and more widespread, the method described may have 
an important impact in evolutionary developmental biology. 
When an annotated genome sequence is available, the pipeline 
can be used to detect events that are not annotated as well as 
events that are not represented by the reference genome, as in 
tumor transcriptomes.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Accession codes. Short Read Archive: SRA012213.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Sample preparation. For adult RNA, a C57BL/6J female (5 months 
old, nonpregnant) was killed and the liver perfused with PBS to 
eliminate blood cells from the liver. Once the redness in the liver 
disappeared and the tissue became pale, the liver was manually 
dissected and homogenized. One to two grams of the homogenate 
was put into Trizol (Invitrogen) for RNA extraction.

Library construction and sequencing. For whole-transcriptome 
shotgun sequencing (WTSS), polyadenylated RNA was purified 
from 10 μg of DNase I (Invitrogen) treated total RNA using the 
MACS mRNA Isolation kit (Miltenyi Biotec). Double-stranded 
cDNA was synthesized from the purified poly(A)+ RNA using a 
Superscript Double-Stranded cDNA Synthesis kit (Invitrogen) 
and random hexamer primers (Invitrogen) at a concentration 
of 5 μM. The resulting cDNA was sheared using a Bioruptor 
UCD-200 (Diagenode) with output setting of H (high, 200 W) 
for 50 min in pulses of 30 s interspersed with 30 s of cooling 
and was then size fractionated using 8% PAGE. The 190–210-bp 
DNA fraction was excised, eluted overnight at 4 °C in 300 μl of 
elution buffer (5:1, LoTE buffer (3 mM Tris-HCl (pH 7.5), 0.2 mM 
EDTA)–7.5 M ammonium acetate) and purified using a QIAquick 
purification kit (Qiagen). The sequencing library was prepared 
following the Illumina Genome Analyzer (GA) paired-end library 
protocol with 10 cycles of PCR amplification. PCR products were 
purified on Qiaquick MinElute columns (Qiagen) and assessed 
and quantified using an Agilent DNA 1000 series II assay and 
Qubit fluorometer (Invitrogen), respectively. The resulting  
libraries were sequenced on an Illumina Genome Analyzer II 
following the manufacturer’s instructions. WTSS libraries were 
paired-end sequenced to 50 cycles.

Read processing. Transcriptome reads were generated using two 
versions of Illumina’s GA basecalling pipeline. Two lanes were 
processed with v1.9.5, which used alignment-dependent quality 
scores and no ‘chastity’ filtering. One of these lanes offered only 
single-end rather than paired-end data. Six lanes of data were 
processed with a later version, v1.3.2, which used alignment-
independent quality scoring and ‘chastity’ filtering. Read pairs 
that had the first six bases in common were removed (‘shadow 
read filtering’).

Read alignment used 147.06 M shadow- and chastity-filtered 
reads from the seven paired-end lanes. ABySS assembly used 
these, as well as 6.39 M shadow- and chastity-filtered reads from 
the single-end lane, for a total of 153.44 M reads. An additional 
51.94 M reads were available that were shadow-filtered but failed 
chastity filtering. ABySS used the mate-pair information in these 
reads in scaffolding contigs at its paired-end stage (see below) 
but did not use k-mers from these read sequences for extending 
single-end contigs. In total, including this second group of reads, 
ABySS accessed 205.38 M reads.

ABySS assembly. The ABySS assembly process consists of 
single-end and paired-end stages16,28 (Supplementary Fig. 1, 
Supplementary Fig. 20 and Supplementary Note 1). The sin-
gle-end stage is based on a de Bruijn graph construct, in which, 
given a parameter k, reads are transformed into tiled k-mers, 
represented as nodes, and (k − 1)-base overlaps between them, 
as directed edges. Allelic differences, repeat sequences with 

minor variations and recurrent coincident base-calling read 
errors form ‘bubbles’ along this graph. These are ‘popped’ by 
removing the variant with lower coverage from the graph, and 
both variants are recorded, with the (k − 1) bases of contextual 
sequence on either end. After error removal in the k-mer space, 
unambiguous ‘walks’ along the graph define single-end contigs. 
In the paired-end stage, mate pairs that align within individual 
single-end contigs define the empirical distribution of mate 
pair distances. Mate pairs in which the reads align to different  
single-end contigs and the empirical distribution are then used 
to estimate intercontig distances, and contigs that can be unam-
biguously merged (that is, those whose measured distances on 
the de Bruijn graph are consistent with the estimated distances) 
are merged to form paired-end contigs. The total numbers of 
k-mers assembled into each contig is recorded as a surrogate for 
the contig’s read-coverage depth.

Contig merges are made only when certain criteria for contig 
length and number of supporting mate pairs are satisfied; for the 
work reported here, a minimum of 10 mate pairs were required, 
and the list of merged contigs had to start and end with contigs 
that were at least 100 bp long. These parameters affect the potential 
junction contigs that will be in the set of L < (2k − 2) contigs.

Contig assembly and processing. We used ABySS v1.1.1 to gener-
ate assemblies for 26 ≤ k ≤ 50, with parameters E = 0 and n = 10.

To merge the contig lists from all k-mer assemblies, we 
considered ‘main’ contigs that were at least (2k − 2) bp long 
(Supplementary Fig. 1 and Supplementary Note 1). We paired 
k-mer assemblies with adjacent k values (that is, ki with ki + 1, ki + 2  
with ki + 3 and so on) and used BLAT22 v34 to align the contigs 
from one paired assembly (‘a’) against the contigs of its paired 
assembly (‘b’) (Supplementary Fig. 2). We then repeated the 
alignments in the opposite direction, aligning ‘main’ contigs from 
‘b’ against those from ‘a’. Considering results from both directions, 
we discarded contigs from one assembly that were completely 
subsumed or ‘buried’, as exact full-length matches, within contigs 
from the other assembly. We continued the pairwise comparisons 
in a hierarchical manner until we obtained a single set of contigs 
(Fig. 1b). We also removed ‘untouched’ contigs, retaining only 
‘parent’ contigs.

We applied two types of nonreference-based filtering to merged 
contigs (that is, contig filtering that did not require a reference 
genome or transcript annotations).

First, we identified main contigs that were (2k − 2) bp long and 
aligned those to the rest of main contigs. We removed any that 
failed to align to a single main contig in two exact-match blocks. 
These were unlikely to be junction contigs that represented real 
alternative assembly paths. Similarly, we identified single-end 
junction contigs that had been used to create extended junction 
contigs and removed any that did not align to a single main con-
tig in two exact-match blocks. We note that this filtering may be 
somewhat too stringent because some of the rejected contigs may 
have been valid contigs but did not align with an exact sequence 
match. Such contigs may have different contig lengths owing to, 
for example, differences in homopolymer run lengths or other 
sequencing artifacts.

Second, we removed ‘island’ single-end contigs (that is, contigs that 
were not included in paired-end contigs) that had no adjacent contigs 
in the de Bruijn graph and were shorter than a threshold of 150 bp. 
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Such contigs are likely to represent intergenic or intronic regions and 
so were unlikely to be informative of transcript structure.

We also assessed an additional filtering step that would be 
available for species that have a reference genome sequence, by 
retaining only contigs whose alignments to the genome contained 
at least one implied intron in which we could recognize either a 
canonical (GT-AG) or noncanonical (GC-AG or AT-AC) acceptor- 
donor pair. For the mouse genome, more than 98.5% of splice sites 
are accounted for by these three splicing signals29. In our filtered 
contig set, 97.9% of alignments had at least one intron with recog-
nizable donor and acceptor sites (Supplementary Fig. 17).

Aligning contigs to the reference genome. We aligned contigs to 
the reference mm9 genome using exonerate19 v2.2 in est2genome 
mode. For each contig, we considered only the highest-scoring 
alignment(s). We retained only those contigs in which the 
highest-scoring alignment was unique and for which at least 
90% of the contig length matched the genome. We used custom 
Python scripts to parse the reported alignments to identify single- 
nucleotide variations and insertion deletions and to parse the  
GFF output files into custom tracks for manual review in the 
UCSC Genome Browser30.

To provide support for candidate sequence variants or new 
transcript events identified from the exonerate alignments, we 
also aligned the contigs with BLAT22 v34. To be considered for 
further analysis, any candidate event was required to be present 
in both exonerate and BLAT alignments.

Identifying new transcripts and transcript events. The genomic 
alignment for each contig consisted of one or more alignment 
blocks along the length of the contig. We compared the genome 
coordinates of all alignment blocks for each contig with the 
genomic coordinates for exons in each transcript model in UCSC 
genome browser gene, RefSeq, Ensembl and AceView annotations, 
which we obtained from the UCSC mouse mm9 genome browser. 
Because contig ends do not necessarily reflect transcript ends, the 
two terminal contig alignment coordinates (that is, the outer edges 
of the first and last alignment block) were excluded; we considered 
only alignment coordinates between the terminal coordinates.

We assigned a ‘full match’ for a contig alignment to an anno-
tated transcript when (i) coordinates of the inside edges of the 
outer (terminal) alignment blocks matched coordinates of the 
transcript’s exons, and (ii) the coordinates of all internal align-
ment blocks also ‘matched’ all of the exons in the transcript 
model internal to the exons identified in case i (Supplementary  
Fig. 8). Edges between an alignment block and transcript exon 
were considered ‘matched’ when they had the same coordinate, 
or, for potential new splice site events, when they were located 
after the previous matching pair or before the next matching pair. 
Potential exon-skipping events were identified when neighbor-
ing alignment blocks skipped intervening exons in all transcript 
models from all four annotation systems considered. Potential 
new exons were identified when one or more extra alignment 
blocks were present between neighboring exons, considering all 
transcript models. Potential introns, or deletions within an exon, 
were identified by gap(s) identified in neighboring alignment 
blocks whose outermost edges matched (see above) the terminal 
edges of a single exon. Potential new UTRs were identified when 
extra alignment blocks extended beyond the first or last exon 

of all transcript models but did not match exons from overlap-
ping transcripts. Potential intron retention events were identi-
fied when intervening intron(s) from all transcript models at the 
same location were captured in a single alignment block. A multi-
block alignment that did not match any of the transcript models 
represented a potential new transcript. Contig alignments were 
required to have at least three alignment blocks for exon skipping 
and new transcript events.

We identified candidate new events independently in exonerate 
and BLAT contig alignments. To identify a high-confidence sub-
set of new events, we required that coordinates of such an event 
agree between the two aligners. However, we required this only for  
the part(s) of the contig alignment that represented (or marked) the  
new event and allowed the alignments to differ away from  
the new event. For the case of a new transcript, though, the entire 
BLAT and exonerate alignments were required to be identical.

We distinguished 5′ versus 3′ UTRs and alternative splicing by 
inferring transcript strand from donor and acceptor splice sites 
reported by exonerate for a multiblock alignment. We reported 
splice site sequences for such events as new splice sites, new exons, 
new introns and new UTRs. Open reading frames for all contigs 
containing potential new events were predicted using BioPython 
(http://www.biopython.org/) to evaluate whether the new events 
would lead to premature stops in translation.

For the retained intron ranking metric analysis (Supplementary 
Fig. 15), coordinates of mouse retained intron records from the 
ASTD31 v1.1 database were converted from mm8 to mm9 with 
the UCSC genome browser liftOver utility (http://genome.ucsc.
edu/cgi-bin/hgLiftOver/). A custom Perl script determined the 
average coverage of each retained intron and its flanking exons 
from a wiggle-format file.

Quantifying gene-level expression. We compared gene-level 
expression results for Trans-ABySS to two methods that align reads 
to a reference genome that has been extended with exon-exon 
junctions from annotated transcripts: ALEXA-seq2 and a whole-
transcriptome shotgun sequencing (WTSS) pipeline (unpublished 
data; Supplementary Fig. 21 and Supplementary Note 1).

The pipeline includes a general method for determining a con-
tig-based expression metric for gene loci, which can be used with 
or without an annotated genome sequence. For the comparison 
reported here, we used the NCBI37/mm9 mouse reference genome 
and Ensembl v54 transcript annotations. We considered reads aligned 
to all contigs whose alignment blocks on the reference genome over-
lapped with exons in transcript model annotations, as follows.

For each Ensembl v54 mouse gene, we identified all filtered contigs 
whose alignment blocks overlapped exons for each transcript for the 
gene. For each gene locus, considering all transcripts for that gene, 
we generated a list of unique identifiers for these contigs, then coor-
dinates for a union set of all alignment blocks and the total length of 
alignment blocks in this union block set.

We aligned reads to each filtered contig using Bowtie32. We required 
exact matches, but allowed multimapping, to accommodate contigs 
whose alignment blocks overlapped. We then identified all reads on 
each contig whose blocks overlapped union exons for a gene and 
resolved overlapping contig alignments by extracting a list of unique 
read identifiers for all reads associated with the gene’s contigs.

We transformed such a read identifier list into a gene-level 
expression metric by dividing the total length of reads in the list 
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by the total length of the union set of alignment blocks. For each 
normalized coverage value, we also calculated an expression score 
by dividing by the sum of the number of million reads aligned to 
all union alignment block sets.

To compare gene-level expression between Trans-ABySS and 
ALEXA-seq, and Trans-ABySS and the WTSS pipeline, we consid-
ered only the subset of 8,190 Ensembl genes for which the gene-level 
fractional coverage of union exons by union contig alignment blocks 
was at least 0.8. We calculated a gene-level fractional coverage as the 
ratio of the length of the union contig alignment block set to the 
length of the union exon set. Because Trans-ABySS contig alignment 
blocks can extend outside of the extents of exons in a union exon set 
for a gene (owing to, for example, retained introns, 3′ UTRs that are 
longer than annotated for Ensembl transcripts or new exons), the 
union alignment block length used was for the intersection of the 
union alignment block set with the union exon set.

Note that although the results reported here used only Ensembl 
transcript annotations, the method is general and can use other 
sets of transcript annotations.

Other methods. Detailed information on de novo transcrip-
tome assembly, issues for de novo and reference-based tran-
scriptome assembly, comparing de novo and reference-based 
assembly, detecting new polyadenylation sites, identifying 
fusion genes, quantifying gene-level expression, validating 
new transcripts and transcript events, the WTSS aligned-read 
pipeline and generating splice graph visualizations is available 
in Supplementary Note 1.

Availability. Trans-ABySS pipeline scripts are available at http://
www.bcgsc.ca/platform/bioinfo/software/.
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