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ABSTRACT
For the last twenty years fragment assembly was dom-

inated by the “overlap - layout - consensus” algorithms
that are used in all currently available assembly tools.
However, the limits ot these algorithms are being tested in
the era of genomic sequencing and it is not clear whether
they are the best choice for large-scale assemblies.
Although the “overlap - layout - consensus” approach
proved to be useful in assembling clones, it faces diffi-
culties in genomic assemblies: the existing algorithms
make assembly errors even in bacterial genomes. We
abandoned the “overlap - layout - consensus” approach
in favor of a new Eulerian Superpath approach that
outperforms the existing algorithms for genomic fragment
assembly (Pevzner et al., 2001). In this paper we describe
our new EULER-DB algorithm that, similarly to the Celera
assembler takes advantage of clone-end sequencing by
using the double-barreled data. However, in contrast to the
Celera assembler, EULER-DB does not mask repeats but
uses them instead as a powerful tool for contig ordering.
We also describe a new approach for the Copy Number
Problem: “How many times a given repeat is present in the
genome?”. For long nearly-perfect repeats this question
is notoriously difficult and some copies of such repeats
may be “lost” in genomic assemblies. We describe our
EULER-CN algorithm for the Copy Number Problem that
proved to be successful in difficult sequencing projects.
Contact: ppevzner@ucsd.edu

INTRODUCTION
Children like puzzles and they usually assemble them by
trying all possible pairs of pieces and putting together
pieces that match well. Biologists assemble genomes in
a surprisingly similar way, the major difference being that
the number of pieces is much larger. For the last twenty
years fragment assembly in DNA sequencing mainly
followed the “overlap - layout - consensus” paradigm,
that is used in all currently available software tools for
fragment assembly (Green, 1994; Bonfield et al., 1995;
Sutton et al., 1995; Huang and Madan, 1999). Trying
all possible pairs of pieces corresponds to the overlap
step while putting the pieces together corresponds to the
layout step of the fragment assembly algorithms. Our

new EULER algorithm is very different from this natural
approach - we never even try to match the pairs of
fragments together and we don’t have the overlap step at
all. Instead we do a very counter-intuitive (some would say
childish) thing: we cut the existing pieces of a puzzle into
even smaller pieces of regular shape thus increasing the
number of pieces. Although it indeed looks childish and
irresponsible, we do it on purpose rather than for the fun of
it. This operation transports the puzzle assembly from the
hostile world of a difficult Layout Problem into the world
of the Eulerian Path Problem with polynomial algorithms
for puzzle assembly (in the context of DNA sequencing).

Although the classical approach culminated in some
excellent fragment assembly tools (Phrap, CAP3, TIGR,
and Celera assemblers are among them), critical analysis
of the “overlap - layout - consensus” paradigm reveals
some weak points. The major difficulty is that there is
still no efficient algorithm for the solution of the layout
problem. The layout problem was formulated as the
Shortest Superstring Problem in the early computational
studies of DNA sequencing:
Shortest Superstring Problem (SSP). Given a set of
strings S = fs1; : : : ; sng, find the shortest string s such
that each s

i
appears as a substring of s.

Since the Shortest Superstring Problem is known to be
NP-hard, a number of heuristics have been proposed. The
early DNA sequencing algorithms (Peltola et al., 1984)
used a simple greedy strategy: repeatedly merge a pair of
strings with maximum overlap until only one string re-
mains, not very different from the way children assem-
ble puzzles. This strategy, however, failed even for rela-
tively small viral fragment assembly projects in mid80s.
In fact, till early 90s, it was commonly believed that cos-
mids represent the limit of the shotgun approach. These
difficulties led to more sophisticated fragment assembly
algorithms (Kececioglu and Myers, 1995; Myers, 1995)
that adequately addressed important practical issues (re-
peat collapsing, sequencing errors, double-stranded DNA,
etc.), but did not make the fragment assembly any sim-
pler - from the algorithmic perspective it still has a fla-
vor of SSP with no efficient algorithm in sight. However,
these algorithmic development pushed the limits of solv-
able fragment assembly instances and allowed biologists
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Fig. 1. Comparative analysis of EULER, Phrap, CAP and TIGR assemblers (N. meningitidis sequencing project). Every box corresponds to a contig in NM
assembly produced by these programs with colored boxes corresponding to assembly errors. Boxes in the IDEAL assembly correspond to islands in the read
coverage. Boxes of the same color show misassembled contigs, for example two identically colored boxes in different places show the positions of contigs
that were incorrectly assembled into a single contig. In some cases, a single colored box shows a contig that was assembled incorrectly (i.e., there was a
rearrangement within this contig). The tangles and repeats with similarity higher than 95% are indicated by numbered boxes at the solid line showing the
genome. To check the accuracy of the assembled contigs we fit each assembled contig into the genomic sequence. Inability to fit a contig into the genomic
sequence indicates that the contig is misassembled. For example, Phrap misassembles 17 contigs in the N. meningitidis sequencing project, each contig
containing from two to four fragments from different parts of the genome.

to assemble BAC-sized clones.
However, any hope for development of efficient algo-

rithms for large-scale SSP-style problems may disappear

after reading p.228 of Garey and Johnson, 1979. Biolo-
gists were the first to learn it shortly after the bacterial
sequencing projects started. Table 1 and Fig. 1 illustrate
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that Phrap, CAP3 and TIGR assemblers misassemble
up to 19% of contigs in different bacterial sequencing
projects. These bacterial genomes were assembled despite
the fact that there is no error-free fragment assembler
today. Biologists “pay” for these errors by the time-
consuming finishing step that identifies missasembled
contigs and corrects them by PCR experiments. Bioinfor-
maticians are also aware of assembly errors as evidenced
by finishing software that supports experiments correcting
these errors (Gordon et al., 1998).

The difficulties with fragment assembly led to introduc-
tion of the double-barreled DNA sequencing (Roach et al.,
1995; Weber and Myers, 1997) that uses additional ex-
perimental information for assembling large genomes in
the framework of the same “overlap - layout - consensus”
paradigm (Myers et al., 2000). The Double Barreled (DB)
data were first employed in 1995 in fragment assembly of
H. influenzae (Fleischmann and et al., 1995). DB data in
this project mainly consisted of pairs of reads (mate-pairs)
from the ends of 2 Kb or 16 Kb inserts randomly sampled
from the genome. It provided a roughly twofold increase
in the effective read length since the approximate distance
between the reads from the mate-pair is known.

Although some fragment assemblers are able to deal
with DB data (Myers et al., 2000; Kent and Haussler,
2001), most sequencing centers use heuristic procedures
to utilize DB data. Such approaches are prone to errors
and may fail for complex genomes. EULER-DB provides
the possibility to analyze DB data in a new way that
allows one to transform mate-pairs “read1 - GAP of length
d - read2” (a roughly twofold increase in the effective
read length) into mate-reads “read1 - DNA SEQUENCE
of length d - read2” in most cases. Assuming that the
insert length is 5Kb, it provides a tenfold increase in
the effective length of reads and transforms the original
fragment assembly problem with N reads of length 500
bp into a new fragment assembly problem with aboutN=2
reads of length 5000 bp. From some perspective, EULER-
DB provides an algorithmic shortcut for still unsolved
experimental problem of increasing the read length. Since
EULER does not mask repeats, a significantly larger
portion of mate-pairs can be transformed into mate-reads
as compared to other DB assemblers.

Finding the number of copies of a repeat (multiplicity of
a repeat) is another important and still unsolved problem
in fragment assembly. The difficulty is that, in genomes
with complicated repeat structure, it may be impossible
to derive the multiplicities of repeats by analyzing only
reads closely located to this repeat. In some cases, the
information about the reads thousands nucleotides from
a repeat may be the only clue to infer the multiplicity
of this repeat. The existing programs largely ignore this
problem and often output every repeat as a single contig
without even trying to find its multiplicity. This is a serious

shortcoming since some repeats have high copy numbers.
We describe a new approach to the Copy Number Problem
that generated the correct multiplicities for all repeats in
the studied bacterial genomes.

EULER: ASSEMBLING PUZZLES BY
BREAKING THEM INTO SMALLER PIECES
How can one resolve the layout problem? Surprisingly
enough, an unrelated area of DNA arrays provides a hint.
Sequencing by Hybridization (SBH) is a 10-years old
idea that never became practical but (indirectly) created
the DNA array industry. Conceptually, SBH is similar
to fragment assembly, the main difference being that the
“reads” in SBH are much shorter l-tuples (i.e., strings of
fixed length l).
Sequencing by Hybridization Problem. Given a set of
l-tuples S = fs1; : : : ; sng, find the shortest string s such
that each l-tuple s

i
appears as a substring of s and every

l-tuple from s appears as an l-tuple in S.
Although the SBH problem looks very similar to SSP,

it is dramatically different from the perspective of com-
putational complexity. The first naive attempts to solve
the SBH problem (Drmanac et al., 1989; Lysov et al.,
1988) followed the “overlap-layout-consensus” paradigm.
However, the corresponding layout problem leads to
the NP-complete Hamiltonian Path Problem. (Pevzner,
1989) proposed a different approach that reduces SBH to
an easy-to-solve Eulerian Path Problem in the de Bruijn
graph by abandoning the “overlap-layout-consensus”
paradigm for SBH.

Since the Eulerian path approach transforms a once dif-
ficult layout problem into a simple one, a natural question
is: “Could the Eulerian path approach be applied to frag-
ment assembly?”. Idury and Waterman, 1995 answered
this question by mimicking the fragment assembly prob-
lem as an SBH problem. They “cut” every read into a
collection of l-tuples thus simulating a DNA chip exper-
iment (instead of DNA sequencing experiment) with an
unknown DNA fragment. Every read of length n is trans-
formed into a collection of n� l + 1 l-tuples (breaking a
puzzle into smaller pieces). At the first glance this trans-
formation of every read into a collection of l-tuples is a
very short-sighted procedure since information about the
sequencing reads is lost. However, the loss of information
is minimal for large l and is well paid for by the compu-
tational advantages of the Eulerian path approach in the
resulting easy-to-analyze graph.

Unfortunately, the Idury-Waterman approach, while
very promising, did not scale up well. The problem is that
(i) the sequencing errors transform the de Bruijn graph
into a tangle of erroneous edges and (ii) repeats pose
serious challenges even in the case of error-free data since
they make the de Bruijn graph even more tangled.
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Table 1. Comparison of different software tools for fragment assembly. IDEAL is an imaginary assembler that outputs the collection of islands in clone
coverage as contigs. In the IDEAL column the number in parenthesis shows the overall multiplicity of tangles. CJ, NM, and LL correspond to Campylobacter
jejuni, Neisseria meningitidis, and Lactococcus lactis sequencing projects.

IDEAL EULER Phrap CAP3 TIGR assembler

CJ # of contigs (# of misassembled contigs) 24(5) 29(0) 33 (2) 54 (3) > 300 (> 10)

coverage by contigs 99.5% 96.7% 94.0% 92.4% 90.0%
coverage by misassembled contigs - 0.0% 16.1% 13.6% 1.2%

NM # of contigs (# of misassembled contigs) 79(126) 149 (0) 160 (17) 163 (14) > 300(9)

coverage by the contigs 99.8% 99.1% 98.6% 97.2% 87.4%
coverage by misassembled contigs - 0.0% 10.5% 9.2% 1.3%

LL # of contigs (# of misassembled contigs) 6(61) 58 (0) 62 (10) 85 (8) 245 (2)
coverage by the contigs 99.9% 99.5% 97.6% 97.0% 90.4%

coverage by misassembled contigs - 0.0% 19.0% 11.4% 0.7%

Pevzner et al., 2001 addressed both these shortcomings
of the Idury-Waterman approach and developed a practical
fragment assembly software tool EULER. This software
produced error-free assemblies for all bacterial sequencing
projects that we studied.

EULERIAN SUPERPATH APPROACH
The idea of the Eulerian path approach to SBH is to
construct a graph whose edges correspond to l-tuples and
to find a path visiting every edge of this graph exactly
once.

For a set of reads S = fs1; : : : ; sng define S
l

as the
collection of all l-tuples from strings from S. Given a set
of reads S = fs1; : : : ; sng, define the de Bruijn graph
G(S

l
) with vertex set S

l�1 (the set of all (l � 1)-tuples
from S) as follows. An (l � 1)-tuple v 2 S

l�1 is joined
by a directed edge with an (l � 1)-tuple w 2 S

l�1, if
S
l

contains an l-tuple for which the first l� 1 nucleotides
coincide with v and the last l�1 nucleotides coincide with
w. Each l-tuple from S

l
corresponds to an edge in G.

If S contains the only sequence s1, then this sequence
corresponds to a path visiting each edge ofG exactly once,
an Eulerian path (Pevzner, 2000). Finding Eulerian paths
is a well-known problem that can be efficiently solved.

Sequencing errors and repeats make implementation of
this SBH-style approach to fragment assembly difficult.
Taking into account the information about what l-tuples
belong to the same reads (that was lost after the construc-
tion of the de Bruijn graph) helps us to untangle this graph.
Every sequencing read corresponds to a path in the de
Bruijn graph called a read-path. An attempt to take into
account the information about the sequencing reads leads
to the problem of finding an Eulerian path that is consis-
tent with all read-paths, an Eulerian Superpath Problem.

A path v1 : : : vn in the de Bruijn graph is called a
repeat if indegree(v1) > 1, outdegree(v

n
) > 1, and

outdegree(v
i
) = 1 for 1 � i � n � 1 (Fig. 2). Edges

v1 v2 vnvn-1

Fig. 2. A repeat v1 : : : vn and a system of paths overlapping with this
repeat. The uppermost path contains the repeat and defines the correct
pairing between the corresponding entrance and exit. If this path were not
present, the repeat v1 : : : vn would become a tangle.

entering the vertex v1 are called entrances into a repeat
while edges leaving the vertex v

n
are called exits from a

repeat. An Eulerian path visits a repeat a few times and
every such visit defines a pairing between an entrance
and an exit. Repeats may create problems in fragment
assembly since there are a few entrances in a repeat and
a few exits from a repeat but it is not clear which exit is
visited after which entrance in the Eulerian path. However,
most repeats can be resolved by read-paths (i.e., paths in
the de Bruijn graph that correspond to sequencing reads)
covering these repeats. A read-path covers a repeat if it
contains an entrance into this repeat and an exit from this
repeat. Every covering read-path reveals some information
about the correct pairings between entrances and exits.
However, some parts of the de Bruijn graph are impossible
to untangle due to long perfect repeats that are not covered
by any read-paths. A repeat is called a tangle if there is no
read-path containing this repeat (Fig. 2).

Eulerian Superpath Problem. Given an Eulerian graph
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(a) (b)

Fig. 3. The largest connected component of the de Bruijn graph for the NM sequencing project after EULER (a) and after EULER-DB (b).

and a collection of paths in this graph, find an Eulerian
path in this graph that contains all these paths as subpaths.

To solve the Eulerian Superpath Problem we transform
the graph G and the system of paths P into a new graph
G1 with a new system of paths P1. Such transformation
is called equivalent if there exists a one-to-one corre-
spondence between Eulerian superpaths in (G;P) and
(G1;P1). Our goal is to make a series of equivalent
transformations (G;P) ! (G1;P1) ! : : : ! (G

k
;P

k
)

that lead to a system of paths P
k

with every path being
a single edge. Since all transformations on the way
from (G;P) to (G

k
;P

k
) are equivalent, every solutions

of the Eulerian Path Problem in (G
k
;P

k
) provides a

solution of the classical Eulerian Superpath Problem in
(G;P). Pevzner et al., 2001 described the equivalent
transformations that led to the efficient solution of the
Eulerian Superpath problem for all bacterial genomes we
studied.

EULER-DB ALGORITHM
Figure 3 illustrates the complexity of the repeat structure
in the N meningitidis genome by showing the largest
component of the de Bruijn graph produced by EULER.
126 long perfect repeats in this genome tangle the de
Bruijn graph and make it difficult to analyze (although it
is the simplest representation of the repeat structure in the
NM genome). EULER-DB untangles this graph using DB
data (Fig. 3).

EULER-DB maps every read into some edge(s) of the
de Bruijn graph (instead of vertices as in conventional
fragment assembly approaches). Such mapping provides
the same computational advantages as the Eulerian Path
approach versus the Hamiltonian Path Approach. After
this mapping, most mate-pairs of reads correspond to
paths that connect the positions of these reads in the
de Bruijn graph (provided the distance between these
positions in the graph is approximately equal to the
estimated distance between reads from the mate-pairs).
EULER-DB views such paths as long artificial mate-
reads and analyzes them with the same Eulerian Superpath
algorithm that is used for the analysis of standard reads.

Mapping reads into the de Bruijn graph allows one to
identify errors in the DB data. In most cases both reads
r1 and r2 from the mate-pair (r1; r2) are mapped to the
same graph component (81% percent of correct mate-
pairs in the NM project). In this case one can find a path
between these reads and compare the length d(r1; r2) of
this path with an estimated distance l(r1; r2) between
clone ends (we assume that d(r1; r2) = 1 if such
path does not exist). In most cases such path is unique
and its length approximately matches the clone length
(d(r1; r2) � l(r1; r2)). In this case we reconstruct the
intermediate sequence between reads and transform the
mate-pair into the mate-path. In the case the difference
between d(r1; r2) and l(r1; r2) is beyond the acceptable
variation in the clone length, it is most likely an error in
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Fig. 4. Tangle resolution in the case when the clone length matches the
length of more than one path between reads from the mate-pair.

the DB data.
In the case of multiple paths between r1 and r2 in the de

Bruijn graph, there are three possibilities:

� The clone length l(r1; r2) does not match the length
of any path between r1 and r2. Such situations often
correspond to errors in the DB data (see below for the
case d(r1; r2) =1).

� The clone length l(r1; r2) matches the length of
exactly one path between r1 and r2. In this case we
transform the mate-pair into the corresponding mate-
read.

� The clone length l(r1; r2) matches the length of more
than one path between r1 and r2. In this case there is
no sufficient information (yet) to transform the mate-
pair into the mate-read. The mate-pair is kept in the DB
data in a hope that it will be resolved at the following
iterations.

Although the latter situation does not happen frequently,
it is important for resolution of very complicated repeats.
Fig. 4 presents an example of two tangles T1 and T2
separated by non-repeated regions B and B 0 (red and blue
boxes on the edges of the de Bruijn graph show two mate-
pairs). The red mate-pair corresponds to multiple paths
(AT1BT2C and AT1B

0T2C) and cannot be transformed
into a mate-read while the blue mate-pair corresponds to
an unique path. A transformation of the blue mate-pair into
a mate-path and the subsequent equivalent transformation
lead to a modification of the de Bruijn graph (Fig. 4) with
the red mate-pair now corresponding to the unique path.
This path generates a mate-read that leads to resolution of
both tangles.

EULER-DB VERSUS OTHER DB
ASSEMBLERS
We emphasize important differences between our ap-
proach and other DB assemblers. The Celera assembler
masks repeats, generates a large set of contigs, and pieces
these contigs together using the DB data. There are two
types of contigs subject to the DB step of the Celera’s
algorithm - G-contigs flanked by gaps in read coverage
(on at least one side) and R-contigs flanked by repeats (on
both sides). In a genome with many repeats, the number
of R-contigs may significantly exceed the number of
G-contigs. Even in a relatively simple case of bacterial
genomes, the number of R-contigs maybe two-three times
larger than the number of G-contigs. For example, in the
NM sequencing project, Phrap generates 160 contigs and
only half of them are G-contigs. In the LL sequencing
project only tenth of all contigs are G-contigs

The Celera assembler provides an excellent solution for
assembly of G-contigs but it does not distinguish between
two types of contigs. After masking repeats, the Celera
assembler generates a large number of contigs, only a
small portion of them are G-contigs corresponding to an
IDEAL assembly. Since the resulting contigs are short, it
leads to a rather complicated DB step (Myers et al., 2000)
that may cause disassembly for short contigs with limited
DB data. In addition, note that valuable information about
DB data from repeating regions is ignored.

In contrast to other DB assemblers, EULER-DB dis-
tinguishes between G-contigs and R-contigs. EULER-DB
does not mask repeats but instead uses them (combined
with DB data) as a powerful tool for resolving R-contigs.
The NM sequencing project illustrates the advantages of
using (rather than masking) repeats in fragment assembly.
EULER-DB reduces the number of contigs from 149 to
117 if only mate-pairs from non-repeated regions are used.
Use of mate-pairs that partially overlap the repeats further
reduces the number of contigs to 91 (Fig. 1). EULER-DB
typically resolves all tangles except tangles that are longer
than the length of the insert. In the NM project (with in-
sert length up to 1800) EULER left only 5 unresolved
tangles of length 3610, 3215, 2741, 2503, and 1831. Af-
ter completing EULER-DB, we build scaffolds using DB
data as “bridges’ between different contigs (EULER-SF).
EULER-SF combines the 91 contigs into 60 scaffolds thus
closing most gaps that are shorter than the insert length
and further simplifying the finishing step (Fig. 1).

Figure 5 illustrates a potential problem with the
“overlap-layout-consensus” approach followed by the DB
step. Consider a simple case of two islands ATB and
A0TB0 (each containing a copy of a long perfect repeat T )
with four mate-pairs (two of them are false). The “overlap-
layout consensus” algorithm may produce 4 separate
contigs AT , B, A0T , and B 0 with two correct and two
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Fig. 5. Filtering out erroneous mate-pairs in EULER-DB.

false (green and blue) mate-pairs. The following DB step
will have a hard time deciding what is the correct scaffold
of these four contigs and filtering out the incorrect mate-
pairs. It will most likely end up in an incorrect scaffold
shown in the figure since it “explains” three mate-pairs
(the correct solution “explains” only two mate-pairs). In
contrast, EULER outputs a connected de Bruijn graph
rather than a collection of 4 separate contigs. This graph
allows one to filter out incorrect green and blue mate-pairs
since there is no path between them in the graph. As a
result, EULER easily resolves the tangle T in this case.

SCAFFOLDING PROBLEM
After completing EULER-DB, we build scaffolds using
DB data as “bridges’ between different contigs (EULER-
SF algorithm). Myers et al., 2000 described an excellent
solution of the scaffolding problem. Recently, Kent and
Haussler, 2001 described a different greedy scaffolding
approach that resulted in a successful draft assembly of
the human genome. EULER-SF uses a similar strategy
but it scaffolds a smaller set of longer contigs (mainly
G-contigs). Since these contigs are long and reliable, the
algorithmic aspects of EULER-SF become almost trivial
as compared to other approaches. The only distinctive
feature of EULER-SF is its ability to use repeats and mate-
pairs from repeated regions to form larger scaffolds.

We first describe EULER-SF for a simple (and non-
practical) case of error-free DB data. A vertex v is
called a source if indegree(v) = 0, and a sink if
outdegree(v) = 0. An edge (v; w) in a graph G is called
an initial (terminal) edge if it is the only edge incident to
a source (sink) in the graph. EULER-SF adds some edges
between sinks and sources of the de Bruijn graph in an

T1 T1T2 T2

T1

T2

Fig. 6. Using the de Bruijn graph for scaffolding. The mate-pairs suggest a
set of additional edges that resolve the tangles and connect all islands into a
single scaffold. Four mate pairs in this graph are processed with EULER-DB
while four others “connect” different components and require EULER-SF to
be processed.

attempt to “explain” as many mate-pairs as possible.
Fig. 6 illustrates a small sequencing project resulted in

5 islands with 2 tangles of multiplicity 2. The de Bruijn
graph for this project consists of 3 connected components
with 11 edges. Every mate-pair with d(r1; r2) = 1
“suggests” an edge connecting a sink with a source in the
de Bruijn graph. An Eulerian path in the resulting graph
defines the correct scaffold (Fig. 6).

In practice this approach needs to be taken with caution
since chimeric clones and errors in DB data “suggest”
wrong edges in the de Bruijn graph. Below we describe
the Scaffolding Problem that models DB data with errors.

A vertex v in a graph is called balanced if indegree(v) =
outdegree(v). A graph is semi-balanced if (i) all its
vertices except sources and sinks are balanced, and (ii)
all its connected component contain some sources and
sinks. A semi-balanced graph can be transformed into
an Eulerian graph (Fig. 6) by adding a number of edges
connecting some sinks with some sources (we assume that
both edges of G and newly added edges have associated
lengths). We search for a transformation of the de Bruijn
graph into an Eulerian graph that “explains” as many
mate-pairs as possible.

A mate-pair corresponds to a pair of positions in the
graph G (these positions correspond to the start/end of the
reads from the mate-pair) . A mate-pair (r1; r2) in a graph
G is feasible if the length of at least one path between
these positions in G matches l(r1; r2). Addition of edges
in G makes previously infeasible mate-pairs feasible and
motivates the following:

Scaffolding Problem. Given a semi-balanced graph G
with a set of mate-pairs, transform it into an Eulerian
graph with maximum number of feasible mate-pairs.

Kent and Haussler, 2001 described a greedy approach to
the Scaffolding Problem in a simple case when the graph
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G is a collection of disconnected edges corresponding to
contigs. Their approach adequately solves the scaffold-
ing problem if the original contigs are long and reliable.
Since GigAssembler has no way to break the misassem-
bled BAC-contigs, it is important to have reliable BAC-
assemblies as an input for GigAssembler.

Let (r1; r2) be a mate-pair with read r1 mapped to a
terminal edge and read r2 mapped to an initial edge in the
de Bruijn graph. Such mate-pair suggests a new gap edge
e in the de Bruijn graph that connects the corresponding
sink and source. Denote r1 as an extension of read r1 till
the end of the terminal edge it belongs to. Similarly, define
r2 as an extension of r2 from the beginning of the initial
edge till the end of r2. EULER-SF substitutes the mate-
pair (r1; r2) by a new extended mate-pair (r1; r2) if some
distance constrains are satisfied. Define b(r1; r2) = jr1j+
jr2j as a lower bound for the distance between reads r1 and
r2 in the final sequence. If b(r1; r2) � l(r1; r2) then the
mate-pair (r1; r2) supports the gap edge e with the length
equal to the estimated gap length l(r1; r2) � b(r1; r2).
In practice we allow gap estimates to take small negative
values to account for variance in the estimate of clone
length. As a result, the support condition changes into
l(r1; r2)�d(r1; r2) � ��. EULER-SF transforms mate-
pairs into extended mate-pairs and adds gap edges into the
de Bruijn graph to form scaffolds.

In practice, EULER-SF uses a more flexible notion of
support to generate gap edges. First, the reads r1 and r2
do not necessarily have to map into terminal and initial
edges. In this case, a mate-pair (r1; r2) may imply a
few fictitious edges, each with its own estimate of gap
length. In this case, the mate-pair (r1; r2) supports an
edge e if e is the only such edge with the gap estimate
that is within acceptable limit among these gap edges
(l(r1; r2) � d(r1; r2) � ��). In practice, we filter the
list of gap edges by deleting “competing” gap edges, i.e.
the multiple gap edges with the same initial (terminal)
vertices. To reduce the influence of errors in DB data we
order the gap edges according to the number of mate-
pairs that support them. Adding the gap edges in the
graph in this order connected different parts of the graph
and produced reliable scaffolds in our experiments with
bacterial sequencing data.

COMPUTING REPEAT COPY NUMBERS
The Eulerian path approach reduces the Copy Number
Problem to finding multiplicities of edges in the de Bruijn
graph. Fig. 7, left presents the de Bruijn graph correspond-
ing to a contig from the Mycoplasma genitalium genome
(simulated reads) with three short tangles. However, it
is not obvious which edges in this graph correspond to
tangles and what are their multiplicities. Although the
edge (2; 3) is used four times in the Eulerian path in this
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Fig. 7. Minimum flow (shown by four paths) reconstructs the multiplicity of
83 bp tangle in the Mycoplasma genitalium genome (simulated reads). The
tangles (2,3), (5,6), and (7,2) have multiplicities 4, 2, and 2, correspondingly.

graph (its multiplicity is 4), our construction of the de
Bruijn graph generates a graph with unit multiplicities
and does not reveal this information.

Our approach to the Copy Number Problem is very
different from the previous statistical approaches that
attempted to solve this problem by considering excessive
read coverage in repeated regions. The existing implemen-
tation of EULER-CN uses a simple labeling procedure
that assigns the copy numbers in a greedy fashion by iter-
atively checking the flow balance condition (the Kirkhoff
low) in every vertex and modifying multiplicities of some
edges. For example, since there are 4 edges leaving vertex
3 and only one edge (2,3) entering vertex 3, the edge (2,3)
is a tangle with multiplicity at least 4. Similar analysis
implies that the edges (5,6) and (7,2) are tangles with
multiplicity at least 2. Assigning these multiplicities to the
tangles (2,3), (5,6) and (7,2) produces a balanced graph
satisfying the Kirkhoff low.

Although this procedure always led to correct solutions
for all tangles in the studied bacterial genomes, it has to
be complemented by a more rigorous flows in networks
procedure for larger genomes. Let’s assume for simplicity
that G(V;E;w) is a graph with a single source s and
sink t and unit edge multiplicities (w(e) = 1 for all
e 2 E). For a vertex v 2 V define div(v) as the
sum of multiplicities of edges entering v minus the sum
of multiplicities of edges leaving v. A graph is called
balanced if div(v) = 0 for every vertex v 2 V , except for
the source and the sink. The graph in Fig. 7 is not balanced
and we are interested in a way to increase the multiplicities
of its edges to make a balanced graph G(V;E; f) with
the same edge set and w(e) � f(e) for all e 2 E. The
balanced graph G(V;E; f) is called a flow from s to t and
div(t) is called the value of flow f .

Copy Number Problem. For an edge e in a graph
G(V;E;w), find a flow G(V;E; f) minimizing the
multiplicity f(e) of the edge e.

The Copy Number Problem can be solved by finding
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a minimal flow in a network with lower capacity bounds
(Grotschel et al., 1993). To make this reduction, we add an
artificial edge from the sink to the source in G and assume
the unit lower capacities on all edges in G. A flow with the
minimum multiplicity of the edge e = (v; w) in this graph
(Fig. 7, right) corresponds to a solution of the Minimum
Flow Problem from w to v satisfying the lower capacity
constraints (w and v are treated as new source and sink,
correspondingly). The minimum flows can be found by an
application of the Min-Flow Max-Cut theorem:

Min-Flow Max-Cut Theorem. For a directed acyclic
graph G(V;E;w) with lower capacity bounds, the mini-
mum flow from w to v equals to the capacity of the maxi-
mum directed cut separating w from v.

In Fig. 7, right, the capacity of the maximum directed cut
separating vertex 3 from all other vertices is 4, exactly the
multiplicity of the tangle (2,3) and the multiplicity of the
corresponding 83 bp repeat in the Mycoplasma genitalium
genome. In a more general formulation, one may want to
minimize the sum of the flows over all edges of the graph.
This generalization may be addressed by an application of
the Minimum-Cost Circulation Problem that also can be
solved in polynomial time (Grotschel et al., 1993).

CONCLUSIONS
Difficulties in resolving repeats led to the introduc-
tion of the double-barreled DNA sequencing and the
breakthrough genome sequencing efforts at Celera (My-
ers et al., 2000). The Celera assembler is a two-stage
procedure that includes masking repeats at the overlap-
layout-consensus stage with further ordering of contigs
via the double-barreled information. The DB step of the
Celera assembler is influenced by the previous “overlap-
layout-consensus” step. All “overlap-layout-consensus”
algorithms are “afraid” of repeats and the Celera assem-
bler has no choice but to mask the repeats. EULER does
not require masking the repeats but instead provides a
clear view of repeats (tangles) in the genome. These
tangles may be resolved either by double-barreled infor-
mation (EULER-DB) or by additional PCR experiments
(EULER-PCR, work in progress).
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