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Abstract

Increasing read length is currently viewed as the crucial condition for fragment assembly
with next-generation sequencing technologies. However, introducing mate-paired reads (sepa-
rated by a gap of length GapLength) opens a possibility to transform short mate-pairs into long
mate-reads of length =~ GapLength and thus raises the question whether the read length (as
opposed to GapLength) even matters. We describe a new tool, EULER-USR, for assembling
mate-paired short reads and use it to analyze the question whether the read length matters.
We further complement the ongoing ezperimental efforts to maximize read length by a new
computational approach for increasing the effective read length. While the common practice is
to trim the error-prone tails of the reads, we present an approach that substitutes trimming
with error correction using repeat graphs. An important and counterintuitive implication of
this result is that one may extend sequencing reactions that degrade with length “past their
prime” to where the error rate grows above what is normally acceptable for fragment assembly.

1 INTRODUCTION

The field of high-throughput sequencing has grown recently in both applications and computational
support. This is enabled by the many platforms that exist for high-throughput sequencing, including
those produced by 454 Life Sciences [18], Illumina 1G Genome Analysis System (www.illumina.
com), Applied Biosystems SOLiD Sequencing (www.appliedbiosystems.com), and Helicos GSS
Sequencing (www.helicosbio.com) . Although the 454 sequencing platform is now producing reads
that are of similar length to Sanger reads, the underlying paradigm is that a higher throughput may
be achieved at the sacrifice of read length. The technologies with the highest throughput currently
available produce short, 20-40 base reads, distinguished as ultrashort reads.

Many recent successful applications of ultrashort reads have used the reference genomes for whole
genome re-sequencing [12], chromatin remodeling mapping [27] and whole-genome methylation [1]
profiling. An analysis in [31] showed that the number of reads uniquely mapped to the human
genome grows with the increase in reads length but reaches a plateau after the first ~ 40 nucleotides.
This implies that there is little incentive to increase the read length in re-sequencing applications
since it provides little return on investment. While generating 40 nt reads is usually sufficient for
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resequencing, de novo fragment assembly may require longer reads. The Illumina platform can
easily generate longer reads, but the error rates deteriorate after the first 35 nt making the ends
of reads not suitable for fragment assembly. This again provides little incentive to generate longer
reads. By extending the effective length of reads, our EULER-USR assembler generates more reads
that span the repeats and thus improves the assemblies.

Most de novo assemblers for Sanger reads follow the “overlap-layout-consensus” paradigm that
is optimized for such reads [13, 15] and does not scale well for short read assembly. In contrast,
most approaches to short read assembly including EULER-SR [3], Velvet [32], and ALLPATHS [2]
use an alternative Eulerian approach that model the assembly problem as a search for an Eulerian
path in a de Bruijn graph [23].

The advantage of the FEulerian approach is that it generates a theoretically optimal assembly
of reads of length k£ (in high-coverage projects) by essentially mimicking fragment assembly as
Sequencing by Hybridization (SBH) problem on a virtual DNA array with all k-mers [25]. Idury
and Waterman, 1995 [14] demonstrated how the Eulerian approach for SBH can be applied to
fragment assembly of Sanger reads. However, the Eulerian approach works best for error-free reads
and quickly deteriorates as soon as the reads have even small number of basecalling errors. To
alleviate this limitation, two different error-correction approaches are used: error correction in
reads prior to assembly [23, 2], and post-hoc graph corrections that remove spurious edges from the
assembled de Bruijn or A-Bruijn graphs [22, 32].

Correcting errors in reads prior to assembly was shown to be useful for both Sanger and 454 Life
Sciences reads [23, 3] (error rates reduced forty-fold from 1.2% to 0.03% for Sanger reads). However,
this approach essentially transforms already rather accurate reads (= 1% error rate) into nearly
error-free reads. The efficiency of the existing error correction approaches quickly deteriorates with
even a small increase in the error rates of original reads (e.g., from 1% to 3%). For example, an
optimized error correction tool from Tammi et al., 2003 [28] was able to reduce the error rates
from 3.4% to 0.3% on simulated data, only a tenfold decrease. While it looks like a reasonably
low error rate, it makes it nearly impossible to apply the Eulerian approach that does not tolerate
even such seemingly small error rates. This makes the full-length Illumina reads “ineligible” for
Eulerian assembly (Figure 1 illustrates that the error rate is &~ 20% at the ends of reads) and sets
an accuracy bottleneck for developing new sequencing technologies.

In this paper we focus on the Illumina technology and describe how to increase the “usable”
length of error-prone Illumina reads while keeping them nearly error free. Although this paper
limits the benchmarking of EULER-USR to the Illumina technology, our algorithm is applicable to
any technology characterized by high error rates, such as the Helicos platform. While the average
error rate in Illumina reads is under 2% for the first ~ 30 nucleotides, it quickly increases in the
tails of the reads reaching = 20% at position 50. No existing short read assembly tool can efficiently
deal with such high error rates and the conventional wisdom is that the read tails become unusable
when the error rate exceeds 3%. Below we introduce an alternative error correction approach that
uses the de Bruijn graph constructed on the accurate read prefixes in order to correct the error-
prone read suffixes by fitting them into the de Bruijn graph. Since EULER-USR can assemble
error-prone reads, we hope that it can catalyze developments of sequencing platforms aimed at
generating longer but less accurate sequencing reads.

Reads may be combined with mate-paired information to further improve the quality of as-
semblies and the next generation sequencing companies are actively pursuing both increasing the
read length and effectively generating mate-pairs. For example, Illumina recently increased the
effective read length from 35 to 50 nucleotides and announced the plans to provide capabilities for
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75-100 nt reads in 2009. On the other hand, Illumina and various sequencing centers are exploring
applications of jump and PET libraries [21] for generating mate-pairs in the context of short read
technologies. While increasing the read length is a high priority for most next-generation sequencing
companies, there exists an opinion that the read length almost does not matter if one uses mate-
paired reads. Indeed, Pevzner and Tang, 2001 [24] demonstrated that most mate-pairs: “read gt gt
- GAP of length d - read,, ;" can be transformed into mate-reads “readgtqyt - SEQUENCE of
length d - read,, ;" by filling in the gap of length d with the nucleotide sequence representing an
appropriate path in the de Bruijn graph. As a result, one can generate contiguous long reads of
length 2-1+d (span of mate-pairs) from short mate-paired reads of length [ making the read length
almost irrelevant (typically, d > 1).

We show how EULER-USR utilizes mate-pairs to significantly improve assembly, and further
use it to answer the question whether read length matters. We demonstrate that the answer to
this question is closely linked with the efficiency of transforming mate-pairs into mate-reads (the
percentage of mate-pairs successfully transformed into mate-reads). When the read length exceeds
a certain threshold, the read length barrier, the efficiency reaches nearly 100%, so that the read
length indeed does not matter. For example, for the E. coli genome, the read length barrier is
~ 35 nt.! This is good news for technologies with reads already longer than 35 nt (e.g., Illumina
reads) but bad news for technologies with shorter reads (e.g., Helicos and SOLiD reads). However,
while the current parameters of Illumina reads may be already sufficient for reliable assembly
of some bacterial genomes, they are not sufficient for slightly larger genomes like Saccharomyces
cerevisiae with higher read length barrier. This observation reveals a synergy between EULER-USR
error-correction approach to increasing the read length and EULER-USR approach to transforming
mate-pairs into mate-reads. Indeed, while the length of the “usable” portions of Illumina reads is
currently below the read legth barrier for yeast (Figure 1), EULER-USR error correction allows
one to increase the effective read-length beyond the read length barrier. Therefore, while the mate-
paired information represents by far the most important factor for improving the assembly quality,
the read length also provides a valuable contribution to the assembly.

The EULER-USR software for assembling mate-paired short reads is publicly available at http:
//euler-assembler.ucsd.edu.

2 Methods

We have developed the EULER-USR algorithm for assembling mate-paired and error-prone ul-
trashort reads. In addition to the previous Eulerian approaches [23] that correct reads based on
k-mer multiplicities; EULER-USR corrects reads based on how they map to repeat graphs 23, 3],
a generalization of the de Bruijn graphs.

The de Bruijn graph of a genome is constructed on the set of of all k-mers in the genome.
Vertices u and v are connected by a directed edge (u, v) if there is a (k + 1)-mer in the genome
that has the k-mer u as a prefix and the k-mer v as a suffix. A small example of a de Bruijn
graph is shown in Figures 2a,b. As a result, every substring of length > k in the genome maps to a
unique path in its de Bruijn graph. Similar to the de Bruijn graph of a genome (Figure 2c), one can
construct the de Bruijn graph of reads (Figure 2d) on the set of all k-mers present in reads. The

IWe emphasize that the read length barrier depends on the genome, the span of mate-pairs, coverage, error-rates
in reads, variability in gap length, etc. The read length barrier ~ 35nt for E.coli was computed under the assumption
that the span is 300 + 30 nt.
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de Bruijn graphs of real genomes are very complex, a reflection of a large number of repeats with
slightly varying repeat copies. A repeat graph of a genome (or reads) is a “simplified” version of the
de Bruijn graph with small bulges and whirls removed [22, 20] (Figures 2e,f). The key observation
in the Eulerian assembly is that the repeat graph of a genome can be approximated by the repeat
graph of reads and thus may be constructed from reads alone, i.e., without knowing the genome
[22] (compare Figures 2e and 2f).

If the repeat graph of the genome is known, one may correct errors in a read by simply mapping
this read to a path in the repeat graph and substituting the read by the path.? While this procedure
would result in a nearly error-free set of reads, it is not clear how to construct a repeat graph from
inaccurate reads and how to further map such reads to the repeat graph. In our approach, we
construct the repeat graph from (accurate) read prefixes and then map entire reads (with inaccurate
suffixes) to this graph by threading.

The EULER-USR algorithm consists of the following 3 steps that can be further supplemented
by the threading procedure that we will describe later (section 2.4):

e Detecting accurate read prefixes and correcting errors within them using frequent k-mers.
This operation generates the set of extremely accurate (nearly error-free) read prefixes.

e Constructing the repeat graph on error corrected prefixes using k-mers.

e Simplifying the repeat graph after transforming mate-pairs into mate-reads.

2.1 Detecting and error-correcting accurate read-prefixes

Although the quality of Illumina reads deteriorates with length, the prefixes are quite accurate (less
than 2% error rate). While many reads can be turned into error-free reads by our error correction
algorithm, errors will remain in low-quality reads even after error correction. In this case, it is
important to detect the longest read prefix that may be error-corrected and discard the reads that
cannot be corrected.

We correct reads using a modified version of the Spectral Alignment (SA) algorithm described
in [23, 4]. The SA(Spectrum,read) method corrects read given a set of k-mers Spectrum. Given a
set of reads R and a frequency threshold m, we define a spectrum Spectrum = Spectrum,, (R, m)
as the set of all k-mers that appear at least m times in reads from from R. The set of such solid
k-mers approximates the set of all k-mers in the genome. We define a read as error-free if all its
k-mers are solid, otherwise, we attempt to make a read error-free by mutating a few nucleotides in
the read [23, 3]. We only consider substitution mutations since there are few insertions/deletions
in lumina reads.

We use a greedy heuristic to find the minimum number of mutations to make every k-mer in a
read solid. It records the number of k-mers that are made solid for all 3 possible mutations at every
position in the read. The mutation that makes the highest number of k-mers in the read solid is
applied if it “solidifies” more than ¢ k-mers, where ¢ is an internal threshold [3]. This heuristic is
iteratively applied either until all k-mers in the read become solid, or until there are no mutations
that can solidify more than ¢ k-mers. We output the prefix of the read that is solid, or discard the
read if none of it is solid. This partitions all reads that are not discarded into an (accurate) prefiz
and (less accurate) suffiz that will be corrected at a later stage. The set of reads is divided into

2This procedure may also result in error corruption [23].
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two partitions: fized and unfizable. The fixed partition has reads that have a solid prefix, and the
unfixable partition contains reads with no solid k-mers. A similar method is used in[2].

In order to choose the multiplicity threshold m, we assume that k-mers are generated from a
mixture of two models: one erroneous, and the other correct (Figure 3). If we assume positional
independence of errors in reads, the multiplicity of erroneous k-mers follows a Poisson distribution,
and the multiplicity of correct k-mers follows a Poisson with a large mean that may be approximated
by a Gaussian. We choose m by fitting a Poisson and Gaussian mixture model to the distribution
of k-mer multiplicity and finding the first local minimum of this distribution (Figure 3).

2.2 Constructing the repeat graph on error-corrected read prefixes

We construct the de Bruijn graph on the error-corrected read prefixes and further transform it into
the repeat graph. Reads that contain errors or SNPs in the middle create short undirected cycles
in the de Bruijn graph called bulges, and reads that contain errors in the end create erroneous
sources or sinks. Finally, some read errors form chimeric reads by transforming the sequence in one
end of the read to that of a distant part of the genome, creating an edge that erroneously connects
two unrelated contigs. Transformation of the de Bruijn graph into the repeat graph amounts to
removing bulges, erroneous sources/sink edges, and chimeric reads as described in [3].

In high-coverage projects, fixed reads provide sufficient coverage across the genome to create
a repeat graph that encodes the entire genome. However, many sequencing projects still contain
low-coverage regions (often due to sampling bias). Since the error correction step relies upon
redundancy of k-mers in reads, the reads in regions of low coverage may be discarded at this
step, causing fragmentation of the assembled contigs. We found that the unfixable partition often
contains many reads from the low-coverage regions, and their exclusion from the assembly causes
fragmentation of the repeat graph. In such cases it may be necessary to use what we call “Second
Chance Assembly” — an assembly of all reads discarded during error correction (see Supplementary
Material)

2.3 Simplifying the repeat graph by transforming mate-pairs into mate-
reads

Since the initial proposal to use mate-paired reads for shotgun sequencing [30], the mate-paired
reads have been considered essential to de movo sequencing. Although in the past the short read
mate-paired data have not been available, various next-generation sequencing vendors have recently
released modules for high-throughput production of mate-pairs. EULER-USR utilizes the mate-
paired reads by modifying the EULER-DB approach [23] for incorporating mate-pairs into the
Eulerian assembly framework.

When mate-pairs are available, the input to the fragment assembly is a set of mate-pairs:
“read gtqp¢ - GAP of length d - read,,, ;”. The key idea of EULER-DB [24] is using the repeat graph
to transform the mate-pairs “readgq,t - GAP of length d - read,,,;” into mate-reads “read gty
- SEQUENCE of length d - read,,;” by filling in the gap of length d with an appropriate path
in the repeat graph. As a result, EULER-DB has an ability to generate contiguous long reads of
length 2 - [ + d from short mate-paired reads of length [. These long mate-reads are subjected to
the traditional Eulerian assembly afterwards. Each mate-read corresponds to a mate-path between
the mate-paired reads mapped to the repeat graph. In reality, the gap length is not fixed but varies
from d — d to d + 9.
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While EULER-DB worked well for traditional Sanger sequencing [22], it needs to be modified
for short reads. The key parameter of EULER-DB is the efficiency, the percentage of mate-pairs
successfully transformed into mate-reads. This transformation is trivial if there is a single path of
length ~ d between read g4,y and read,,, ; in the repeat graph, as the path is simply used to fill the
gap between the reads. This was indeed the case for the overwhelming majority of Sanger reads
making EULER-DB rather efficient. However, the repeat graphs for short reads are often very
complex and in some cases there are multiple paths of length ~ d between paired reads (Figure
4). Pevzner and Tang, 2001 [24] described this problem and proposed an iterative approach to
solve it (see Figure 4a in [24]). EULER-SR [3], Velvet [32], and ALLPATHS [2] all implement
the idea of filling the gap between mate-pairs using the repeat graph and apply it to simulated
data (e.g., compare Figure 4b in [24] with Figure 5c in [2]). Below we apply EULER-DB to real
INlumina mate-paired reads and show how to extend EULER-DB to analyze complex repeat graph
characteristic for short read sequencing.

The “Breadcrumb” “All paths definition” procedures in Velvet and ALLPATHS are both aimed
at filling up the gap between the mate-paired reads in the repeat graph. For most mate-pairs
in E.coli there is only one path between mate-paired reads. In such cases the paths found by
the “Breadcrumb” and “All paths definition” methods are equivalent to EULER-DB. However,
the remaining mate-pairs are important for resolving complex tangles and Velvet and ALLPATHS
describe different approaches to addressing this challenge. Below we describe how a simple extension
of EULER-DB addresses this problem.

When there are multiple paths in the repeat graph between a mate-pair (readsiqrt, readenq),
we may choose a path with maximum support from mate-pairs. Figure 4 illustrates the situation
when there are many ways to transform the mate-pair (readsiq,rt,reade,q) into a mate-read using
one of the paths between them. Let edge esiari(€ena) be the edge where readgiq,r+ begins (readenq
ends ). A mate-pair supports a path P between €4t and ecyq if one of the reads is in either gzt
Or €e¢pnq, and the other read is in an edge in P. The number of such mate-pairs for a path P is
denoted support(estart, €end, P). The path P with the highest value of support(estart, €end, P) is
used to create the mate-path PT = (esqrt, P, €eng). Note that due to gaps in coverage there may
be edges in the path that are not supported. Furthermore, errors in reads may create reads that
support edges not on the optimal path. Therefore, we use a path with maximal Support(P) among
all paths between readgiqrs and readenq unless Support(P) falls below MinSupport threshold.
Further details of transforming mate-pairs and into mate-reads are given in the Supplementary
Information.

2.4 Assembling error-prone reads (error-correction by threading)

Each read corresponds to a unique read path in the de Bruijn graph representing the sequence of
the read. Since the repeat graph approximates the de Bruijn graph, a similar argument applies to
the read-paths in the repeat graph. A read may be mapped to the de Bruijn graph by aligning it
to a closest subpath in the graph. Since the de Bruijn graph is built on read prefixes, the path
corresponding to every read prefix (prefiz-path) is known thus facilitating the read mapping. We
may find the path that the entire read maps to by searching all subpaths continuing from the known
prefix-path, a process we refer to as threading reads through a graph.

In the case that threading is invoked, the EULER-USR/(k, m, ) algorithm proceeds in five steps.
The user has a choice of either specifying all three parameters: k,m, and [, or specifying a single
parameter k. In the latter case, EULER-USR selects the suitable parameters m and [ automatically.
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e Detecting accurate read prefixes and correcting errors within them using frequent k-mers
(multiplicity m and higher). This operation generates the set of extremely accurate (nearly
error-free) read prefixes.

e Constructing the repeat graph on error corrected prefixes using k-mers. This operation gen-
erates the set of k-mer contigs.

e Threading entire reads through the repeat graph to extend the effective read length. This
operation generates the set of accurate threaded reads.

e Constructing the repeat graph on threaded reads and generating [-mer contigs using [-mers
(I>E).

e Simplifying the repeat graph by transforming mate-pairs into mate-reads

Once the repeat graph has been constructed on the (accurate) read prefixes, we attempt to
map every fixed read to the graph. However, while mapping of the (accurate) read prefixes is well
defined, mapping of (inaccurate) read suffixes is ambiguous. EULER-USR utilizes the repeat graph
to correct errors in read suffixes.?

Every read prefizx suffiz not discarded by error correction is represented as a concatenation of its
prefix and suffix. Since the genome is an Eulerian traversal of its repeat graph, all substrings of the
genome map to paths in the repeat graph. While the accurate prefiz may be uniquely mapped to a
path path(prefiz) in the repeat graph, it is not clear how to map the entire read prefiz * suffiz since
suffiz is inaccurate. We argue that to map prefix * suffiz, one has to choose one of the extensions
of path(prefir) among all paths of length n (read length) that begin with path(prefiz). We denote
the set of such paths as P and argue that a path in P with the minimum edit distance to the read
represents the “best” mapping of the read prefiz * suffiz to the repeat graph. While in many cases
such a thread-path path(prefiz = suffiz) may be used to correct the read prefiz x suffiz, it has to be
done with caution (see below).

If P has a single edge (Figure 5a), we correct the read with the sequence on the edge. However,
these reads may not be used to resolve repeats and thus are vestigial in terms of improving the
assembly. If P has multiple paths (Figure 5b), we rank paths P;, Ps, ... in P in the increasing order
of their Hamming distances dist(Py), dist(P,), ... to the read prefiz* suffiz. While it is tempting to
choose the “optimal” path P; for correcting errors in the read prefix * suffiz it has to be done with
caution. The problem is that the sequencing errors in the inaccurate suffiz may transform it into an
alternative string that maps to a “wrong” path in the repeat graph. We therefore check that (i) the
optimal path P; is sufficiently similar to prefizx suffiz, and (ii) the second best path P; is sufficiently
dissimilar from prefiz * suffiz. To check these conditions, we use a parameter f, the expected error
rate in read suffixes, and classify a path P as similar to the read if dist(P) < f - |suffiz|, and
dissimilar otherwise. If both conditions (i) and (ii) are satisfied we use Py for correcting the read
prefix x suffix, otherwise we iteratively trim before the position of the last difference, and re-thread
the read until both these conditions are satisfied.

To obtain the final assembly that takes advantage of the longer threaded reads, we build the
repeat graph on l-mers for [ > k (where k was used to build the original repeat graph) so that repeats
of length [ and shorter are resolved. The tradeoff between the k-mer size and repeat resolution is
that edges from the repeat graph G of the genome (constructed on k-mers) will be split in the repeat

3Error-corrected read suffixes only contribute to enlarging the assembled contigs and do not contribute to base-
calling.
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graph of reads if there is a gap longer than n — k between read start positions, where n is the read
length. When [ > k the repeat graph of reads constructed on l-mers will be more fragmented than
the repeat of reads constructed on k-mers. We prevent fragmentation of the repeat graph of reads
constructed on [-mers by creating artificial reads x o y for every pair of adjacent edges (contigs)
and y in the repeat graph of reads constructed on k-mers (k-mer contigs). One can either set the
maximal | = n — 2 or empirically chose ! to minimize fragmentation of the graph.

3 Results

3.1 Datasets

We use the following datasets to benchmark EULER-USR and compare it with Velvet [32], the
most accurate among the recently published short read assemblers.

e ECOLI A set of 29.8 million paired Illumina reads from the ~ 4.6 Mb FE.coli genome (227X
coverage). For benchmarking we randomly selected 10 million reads from this dataset. Map-
ping of reads to E.coli genome revealed that 87% are error-free. The separation between
mate-pairs is 145 + 25 bp.

e BAC50 and BAC35. A set of [llumina reads from an ~ 170Kb human BAC generated at the
Joseph Ecker lab at the Salk Institute.* This BAC was sequenced over several runs allowing
us to generate an error profile that was not biased to a single run. A total of 2 million 35-50
base reads were generated for this BAC resulting in 500X coverage allowing us to choose an
appropriate subset for a typical coverage benchmark. We randomly selected reads resulting
in 50X coverage by 50 nt long reads. Mapping these reads from the BAC to the reference
sequence revealed that 20% are error-free and 12% have only 1 error. Furthermore, 84% are
error free in the first 30 bases.

While EULER-USR is designed to work with longer reads, the Velvet assembler is optimized
for 35 base long reads and the performance deteriorates for longer reads. In order to make a
fair comparison with Velvet we created a 35 nt read dataset BAC35 by truncating 50 nt reads
from BAC50 to 35 nucleotides resulting in 35X coverage of the BAC.

e simBAC100 and simECOLI100. A set of simulated 100 base reads from the human BAC. This
set was generated to check whether EULER-USR can support extending sequencing reactions
well beyond their prime. We simulated reads by mapping all 2 million reads from the dataset
generated at Salk Institute to the BAC, extending them up to 100 bases, and simulating
random errors. We further selected a set of resulting 100 base reads so that the coverage was
200X (to ensure that results were not biased by gaps in coverage). Errors in the resulting 100
base long reads were simulated using a 1% error rate for the first 35 bases, and 20% error
rate for the remaining 65 bases. This error profile leads to a challenging assembly problem
without attempting to model reads characteristics for a particular technology. Our method
for correcting errors using a repeat graph requires that the entire genome is covered by the
high quality prefixes of reads. The simBAC100 dataset includes as many reads as the BAC50
dataset to ensure that the entire genome is represented in the repeat graph constructed on
35 bases read prefixes.

4This BAC has a repeat content representative of the rest of the human genome.
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The simECOLI100 is the set of simulated 100 base reads from E. coli (100X coverage). Errors
were added to the reads according to the same 1%-20% error profile used for simBAC100.

e simBAC35. A set of 35 base read prefixes from simBAC100. Because the simBAC100 dataset
uses simulated reads, it is not directly comparable to the assemblies on real reads. Instead, to
perform proper comparison for the effect of threading reads, we compare the assembly on 100
base (inaccurate) simulated reads to the assembly on the 35 base (accurate) simulated reads.

3.2 Benchmarking

We compared five recently published de novo short read assemblers aimed at short reads: SSAKE [29],
SHARCGS [6], VCAKE [16], Edena [11], and Velvet [32]. Of all assemblers, Velvet performed the
best in terms of N50 contig size.

SSAKE is designed for assembling error-free reads, and SHARCGS is designed for reads with
error-rate below 0.05%. Running these two methods on Illumina reads resulted in filtering of all
reads on a preprocessing step or (if preprocessing is turned off) in an inferior assembly quality.
VCAKE is an improvement of SSAKE and is able to assemble reads with higher error rate. For the
BAC35 dataset, VCAKE, Velvet, Edena, and EULER-USR produced similar assemblies. However,
the quality of assemblies generated by VCAKE or Edena deteriorate with increasing the read length
(BAC5H0 dataset) producing more fragmented assemblies than Velvet. Furthermore, the assemblies
for the ECOLI dataset by both Velvet and EULER-USR resulted in doubling the N50 contig size
as compared to VCAKE or Edena. We therefore decided to limit the detailed benchmarking to
Velvet only.

A goal in the Eulerian approach is to construct the repeat graph Gy (Reads) on the set of
Reads that best approximates the “ideal” repeat graph Gy (Genome) of the Genome [3] (denoted
as REPEAT-GRAPH(k) in the follow-up Tables and Figures), as every Eulerian path in the repeat
graph corresponds to a possible solution of the fragment assembly problem. However, due to
fragmentation, the REPEAT-GRAPH statistics are misleading because the longer the contigs are,
the more likely they are to be fragmented by low coverage regions (note that fragmentation of long
contigs leads to a quick deterioration of the N50 size). Therefore, uneven distribution of reads
over the genome may turn approximating G (Genome) into an unattainable goal. To setup a more
realistic goal, we transform the set Reads into the error-free set PerfectReads (by substituting every
read with the sequence of the genome it maps to). In the absence of mate-pairs, the repeat graph
G (PerfectReads) constructed on this set of reads represents the best assembly our assembler aims
for while assembling the real reads (refereed to as OPTIMAL-ASSEMBLY in the follow-up Tables
and Figures).

3.3 How are assemblies improved by mate-paired reads?

To benchmark EULER-USR and VELVET on the ECOLI dataset, we first evaluated assembly
with unpaired reads in order to later gauge the effect of mate-pairs. Both the EULER-USR and
Velvet (k = 27) assemblies were close to the theoretically optimal assembly (Table 1 and Figure 6)
with similar N50 sizes (20K for EULER-USR and 16K for Velvet) and no miss-assemblies. The
contigs longer than 500 bases in EULER-USR assembly (those likely to be non-repetitive) contain 6
mismatches, 3 insertions, and 1 deletion (30 mismatches, 3 insertions, and 3 deletions in the Velvet
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assembly).”

Table 1 and Figure 6 compare EULER-USR and Velvet and illustrate that mate-pairs signifi-
cantly improve the assemblies. The N50 length for FE.coli assembly increases from 16K to 45K for
Velvet and from 19K to 62K for EULER-USR. EULER-USR generated 127 contigs longer than
1000 bp that is comparable to the typical number of contigs resulting from pre-finished Sanger
assembly of bacterial genomes (see [22] and http://nbcr.sdsc.edu/euler /benchmarking/bact.html).
Only two (realtively short) contigs produced by EULER-USR were misassembled. An alignment of
the assemblies to the E. coli genome is shown in the Supplementary Materials.

Assembly N50  Length (# contigs) Length (# contigs) Length (#contigs)

>20000 nt >5000 nt >1000 nt
REPEAT-GRAPH(30) 22,173 2,432,772 (69) 1,232,578 (237) 1,481,685 (331)
EULER-USR unpaired 20,096 2,233,252 (68) 4,212,353 (249) 4,490,810 (355)
Velvet unpaired 16,424 1,953,255 (59) 4,068,326 (262) 4,484,065 (416)
EULER-USR mate-pairs 62,015 4,207,753 (72) 4,481,764 (96) 4,524,074 (113)
Velvet mate pairs 45,427 3,800,552 (79) 4,419,542 (131) 4,507,932 (167)

Table 1: A comparison of assemblies of E. coli 35 base Illumina reads, unpaired and mate-paired.
N50: the size of the contig such that 50% of the assembly is contained in contigs of size N50 or
greater. Length (# contigs) (>20000 nt), total length of all contigs longer than 20000 and total
number of such contigs. We found that Velvet produces optimal results when run as Velvet(27,5).

3.4 How are assemblies improved by read-threading?

When estimating input parameters for EULER-USR, our mixture model suggested the multiplicity
threshold m = 5 for BAC50 dataset with k-mer size 20. The accuracy of error correction was
evaluated by mapping error-corrected reads to the BAC (Table 2). ;From the original sets of reads,
91.3% of the BAC35, 88.6% of the BAC50 datasets, and 98.0% of the simBAC100 dataset were
retained after error-correction based on Spectral Alignment. During graph correction, the removal
of certain edges from the graph truncates the reads that map to these edges, further shortening
the average read length. While most reads in this dataset were trimmed only by a few nucleotides,
others become rather short and need to be extended with threading as described above.

Table 3 presents the statistics of of the N50 contig size as well as the cumulative contig size for
various datasets (reported for contigs longer than 1000, 500, and 100 bases). Since the N50 statistic
is limited we show the differences in assemblies by plotting the cumulative length of contigs ordered
by size (Figure 7). Figure 7 shows how longer threaded reads improve the assembly quality for
both real and simulated reads.® Figure 7 illustrates that while VELVET and EULER-USR show
similar results for the BAC35 dataset (no read threading), the EULER-USR assembly improves for
BACS50 and simBAC100 datasets (due to its ability to utilize the error-prone reads) while VELVET
assembly hardly changes. Indeed, even with a modest increases in read length from 35 nt to 50
nt, read threading increases N50 contig size by 13% and the total length of long contigs (longer

5This analysis underestimates the basecalling errors by limiting them to long contigs and thus avoiding the most
difficult repeated regions. Nevertheless, the basecalling accuracy appears to be comparable or even better than the
accuracy of high-coverage Sanger sequencing.

6In some cases the statistics for EULER-USR is slightly better than for OPTIMAL-ASSEMBLY due to subtle
differences in contig reporting.
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Original reads SA corrected reads Threaded reads

after graph correction
Dataset Length Error  Average Error Retained  Average Error
rate(%) length  rate(%) reads (%) length rate(%)
BAC35 35 0.92 34.9 0.01 91.3 34.9 0.004
BAC50 50 4.36 46.7 0.04 88.6 49.3 0.049
simBAC100 100 13.3 46.6 0.07 98.0 94.5 0.050
simECOLI100 100 12.6 50.5 0.003 99.6 98.8 0.017

Table 2: Error rate (per read base) and average length of reads on different stages of the EULER-
USR threading algorithm. The error rate is computed by mapping reads to the genome. We
compute the length and error rate for the original reads, reads corrected by Spectral Alignment
that are retained after graph correction, and finally after threading. The increased error rate after
threading is due to threading reads through their consensus sequence in the repeat graph (rather
than de Bruijn graph).

than 1000 nt) by 22%. Figure 8 shows how assembly improves with increase in read coverage when
assembling the FE. coli genome and leads to a conclusion that the coverage increase beyond 55X
results only in modest increase in assembly quality.

When the BAC50 dataset is assembled without threading reads, the N50 contig size is 1752 with
a net assembly size of 171301. Read-threading only improves the quality of assembly by correcting
reads that pass through 3 or more edges (most reads map to one or two edges in the repeat graph).
Table 4 shows the number of reads that are correctly fixed with threading and how many edges they
are threaded through for BAC50 dataset (see Suplementary Material for analysis of simBAC100
dataset). Although a very small fraction of reads are threaded through more than 3 edges, they
improve the quality of assembly.”

Since bacterial genomes have a compact gene structure, we analyzed how many genes are cap-
tured within contigs constructed by various programs. Even though the repeat graph of E. coli is
fragmented into many contigs (over 500 for REPEAT-GRAPH(30)), many contigs are long, and
contain multiple genes. We mapped the contigs of REPEAT-GRAPH, EULER-USR, and Velvet
assemblies to the genome, and counted the number of genes that contained entirely within a contig.
Table 5 illustrates that contigs produced by Velvet and EULER-USR capture a large number of
bacterial genes thus enabling various applications. For example, one can perform MS/MS pro-
teomics analysis of bacterial genomes with Illumina contigs almost as efficiently as with completed
genomes [9].

The FE. coli genome contains relatively few repetitive elements compared to the human genome,
and so the longer reads should be able to resolve more repeats in F. coli than in the human BAC.
In the simECOLI100 dataset, the usable read length was increased from an average of 50.5 nt to
98.8 nt (Table 2) by threading. When we compare the assembly on the simulated read prefixes
to the threaded reads, the N50 contig size more than doubles to =~ 45K. This indicates that the
announced increase in Illumina read length to 100 nt (planned for 2009) will lead to significant
improvement in assembly in the case of unpaired reads. While it is an important improvement
in applications like single cell sequencing (where the mate-paired protocols are not available yet),
it remains unclear whether the read length (as opposed to span) matters in case of mate-paired

"For BAC50 dataset, EULER-USR has 20 mismatches and 2 insertions, a higher error rate as compared to ECOLI
dataset.
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Assembly N50  Length (# contigs) Length (# contigs) Length (#contigs)
method/dataset >1000 >500 >100
BAC35

REPEAT-GRAPH(25) 1869 97946 (34) 126774 (74) 153378 (194)
OPTIMAL-ASSEMBLY(25) 1609 92758 (39) 119773 (78) 153348 (225)
EULER-USR(20,2,25) 1786 89905 (39) 118576 (80) 147227 (210)
Velvet(21,5) 1428 87551 (43) 113522 (80) 138554 (173)
BAC50

REPEAT-GRAPH(40) 4168 143224 (39) 160679 (64) 175246 (128)
OPTIMAL-ASSEMBLY(40) 2023 129392 (55) 152551 (87) 176491 (193)
EULER-USR(20,5,40) 2022 119489 (45) 148319 (86) 171082 (164)
Velvet(31,5) 1381 84292 (39) 112886 (78) 139176 (169)
simBAC35

REPEAT-GRAPH(25) 1869 97946 (34) 126774 (74) 153378 (194)
OPTIMAL-ASSEMBLY (25) 1847 95180 (35) 159359 (85) 175305 (242)
EULER-USR(20,5,25) 1818 98187 (39) 129671 (85) 162109 (242)
Velvet(21,5) 1844 97174 (36) 122816 (73) 144578 (153)
simBAC100

REPEAT-GRAPH(50) 7163 167112 (31) 172990 (39) 175444 (53)
OPTIMAL-ASSEMBLY (50) 3971 162129 (47) 169794 (58) 176908 (94)
EULER-USR(20,5,50) 2639 140718 (47) 163244 (80) 175900 (135)
Velvet(31,5) 695 36796 (22) 77557 (80) 120147 (241)
simECOLI100

REPEAT-GRAPH(50) 59656 4519592 (140) 4528404 (152) 4583803 (533)
EULER-USR(20,10,50) 44710 4519083 (182) 4531837 (200) 4562551 (366)

Table 3: Assembly statistics of various datasets of Illumina reads. N50: the size of the contig such
that 50% of the assembly is contained in contigs of size N50 or greater. Length (>1000), Length
(>500), and Length (>100): the total length of all contigs longer than 1000, 500 nt and 100 nt,
respectively. For Velvet(k — mer size, coverage) we found that the coverage cutoff t=5 maximizes
the assembly quality. The effect of threading reads on assembly quality may be seen by com-
paring simBAC35 and simBAC100. The rows describing REPEAT-GRAPH(50) and OPTIMAL-
ASSEMBLY (50) are identical since the reads cover the entire BAC in simBAC100 dataset. In all
tests tere was a single misassembly (in simECOLI100 dataset).
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No. reads Total Reads spanning Reads spanning Reads spanning  Average read length

one edge two edges > 2 edges (after threading)
correct/correct 100942 95781 2161 2550 50
correct/incorrect 207 174 27 6 50
incorrect/correct 55515 52408 1464 1643 42
incorrect/incorrect 347 254 33 60 45

Table 4: The results of read threading for BAC50 dataset. Reads are classified into four categories:
correct/correct (if threading does not change a correct read), correct/incorrect (if threading turns
a correct read into incorrect), incorrect/correct (if threading turns an incorrect read into correct),
and incorrect/incorrect (if threading turns an incorrect read into an incorrect read). The table
classifies reads in each of these four categories depending on how many edges in the repeat graph
they span.

Method ‘ REPEAT-GRAPH EULER-USR Velvet
# complete genes | 3937 (95.2%) 3956 (95.7%) 3912 (94.6%)

Table 5: Mapping of the 4136 genes from FE.coli into theoretical repeat graph and repeat graph
constructed by EULER-USR and Velvet for the ECOLI dataset (see Table 1 for a description of
the parameters). We show the number of genes that are contained entirely within the constructed
contigs.

reads (i.e., would increasing the length of mate-paired reads from 35 nt to 100 nt lead to significant
improvements in assembly if the span remains fixed?)

3.5 Does the read length matter?

The availability of two methods to resolve repeats (mate-pairs and threading) brings the question
whether they may be used in conjunction to further improve assemblies. To test this, we simulated
mate-pairs with span 300+30 nt in the genomes of E. coli and S. cerevisiae. The read length r was
fixed in each simulated dataset, with a minimum read length of 25 nt and maximum length 100
nt. The goal was to evaluate whether the quality of assembly (e.g., N50(r), N50 length for reads
of length r) with longer reads improves as compared to the quality of assembly with shorter reads
(e.g., whether 100 nt mate-paired reads result in a better assembly than 35 nt reads). We define
the read length barrier as the read length after which the quality of assembly does not significantly
improve (e.g., N50 does not increase by more than 5%).

The error-free mate-paired reads were simulated starting at every genomic position and each
simulated dataset with reads of length r was assembled with EULER-USR (k-mer size 24). To
evaluate the quality of assemblies, we used N50 contig size and efficiency (the percentage of mate-
pairs transformed into mate-reads). The efficiency should be analyzed with caution because only
mate-pairs spanning multiple edges in the repeat graph contribute to improving the assembly (sim-
ilar effect is illustrated in Table 4 for single reads). In the E. coli assembly of Illumina reads, this
was only 3.9% of all mate-pairs. As a result, for the simulated E. coli assembly, the efficiency is
rather high for all read lengths (varying from 97.8% for r = 25 to 99.0% for » = 55 and to 99.2%
for » = 100). However, even a small increase in efficiency translates into significant increase in
N50 statistics (varying from ~ 40K for r = 25 to ~ 60K for r = 55). Therefore, small increases
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in efficiency may reflect very significant increase in the number of “useful” mate-pairs, i.e., mate-
pairs that improve the assembly. To better gauge the contribution of such “useful” mate-pairs, we
introduce the relative efficiency, the percentage of useful mate-pairs transformed into mate-reads
(we call a mate-pair useful if its reads reside on different edges). For the yeast dataset, the relative
efficiency varies from 61% for r = 25 to 80% for r = 55 (the maximum value among all read lengths
is 81%). These results indicate that for the yeast dataset efficiency hardly change after the read
length exceeds ~ 60 nt.

Our attempt to answer the question “Does the read length matter?” is limited in many aspects
(e.g., reads were simulated error-free, and coverage was perfectly uniform) and it only answers the
question whether the read length matters for EULER-USR assemblies (rather than for a theoret-
ically optimal assembly with mate-pairs).® However, it reveals that for the E.coli, the assembly
hardly improves after the read length exceeds 35 nt (efficiency=98.7%, N50 contig size ~ 60KDb).
The assembly deteriorates when the read length decreases from 35 to 25 indicating that the read
length barrier for E.coli (with the chosen simulation parameters) is ~ 35 nt.”

For the S. cerevisiae genome, the assembly quality only slightly improves after the read length
exceeds 60 nt (N50 is &~ 70K for » = 60 but drops to ~ 62K at r» = 45 and to ~ 41K at r = 25. It
indicates that the read length barrier for S. cerevisiae (with chosen simulation parameters) is ~ 60
nt.

4 Discussion

The recent addition of mate-paired reads to the arsenal of short read technologies opened a possi-
bility of assembling complex genomes for a fraction of the cost of the traditional Sanger sequencing.
We demonstrated that the Eulerian approach is well suited for assembling mate-paired short reads
by transforming mate-pairs into mate-reads using repeat graph. We further complemented the ap-
proach from [24] by selecting the most “supported” mate-reads to resolve some difficult cases when
a mate-pair may be transformed into multiple mate-reads.

In addition to incorporating mate-pairs into fragment assembly, we also show that the conven-
tional wisdom of “read trimming” may be substituted by threading to correct error-prone read tails.
We demonstrate that if a sequencing technique “suffers” from quality degradation along the length
of a read, it may still be used effectively in de movo assembly. Despite the fact that short read
assemblies are rather fragmented, we demonstrate that most bacterial genes map to single contigs
thus enabling gene discovery and annotation of bacterial genomes.

The Eulerian approach models the error-prone suffixes of the reads as short edges to vertices of
out-degree zero. All recently developed short read assemblers remove such edges from the graph
(e.g., via the the erosion procedure in [22]) thus essentially discarding information contained in
the error-prone read suffixes. Therefore, even if the reads are not explicitly trimmed, they are
implicitly trimmed after the de Bruijn graph is constructed (e.g., using the “clipping” procedure in
Velvet [32] or “removal of hanging ends” procedure in ALLPATHS [2]). EULER-USR differs from
these approaches by utilizing information in the error-prone read prefixes.

8The theoretically optimal algorithms for assembling mate-paired reads remain unknown even for error-free reads
and fixed distance between between mate-pairs [19].

9We found that assemblies of mate-pairs with average span d 4 ¢ may be sensitive to the parameter o even for
the same d. For example, simulated assemblies with error-free reads may have lower quality than the real assemblies
with the same d but different o.
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Our study on the use of mate-paired reads in conjunction with read threading revealed that
there exist some synergy between these two approaches when the read length remains below the
read length barrier. While mate-pairs represent the major factor in improving the assembly quality,
read threading contributes to further improvements in assembly. The next challenge for short-read
technologies is to assemble larger and more complex genomes. The ability to exploit any information
possible to resolve repeats will become important when assemblers move to mammalian genomes.
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Figure 1: The positional profile of basecalling errors for Illumina reads for 2 million 50 nt long reads
from a human BAC. The error rate across reads is shown (solid) along with the error rate for reads
with a fixed number of errors. The erroneous nucleotides in each read are detected by mapping the
read to the reference genome. The high error rate in position 6 is due to the bias in our particular
data set rather than a systematic problem with the Illumina technology.
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(c) de Bruijn graph of a genome (e) repeat graph of a genome
(a) de Bruijn graph of a sequence
ACTCCGAC
AAGAC AC
BAG—"—= X GAC—~ACT> drm — A
ACTGGGAC
(b) condensed de Bruijn graph (d) de Bruijn graph of a (f) repeat graph on a
set of reads set of reads

Figure 2: From de Bruijn graphs to repeat graphs. The de Bruijn graph of a sequence contains a
vertex for every k-mer in the sequence, and an edge (u, v) for every pair of consecutive (overlapping)
k-mers in the sequence (a). The condensed de Bruijn graph replaces all paths containing non-
branching vertices by a single edge labeled by the sequence that generated the path (b). When
the condensed de Bruijn graph is constructed on a genome, it contains some small bulges and
whirls representing repeats with slightly varying repeat copies (c). In the repeat graph the bulges
and whirls are removed (e). The de Bruijn graph of reads contains additional spurious bulges and
whirls caused by sequencing errors in reads (d). The goal of the Eulerian assembly is to construct
the repeat graph of reads (f) that approximates the repeat graph of the genome. Different papers
use different terminology, e.g., the edges of these graphs are referred to as “blocks” in [32] and
“unipaths” in [2].
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Figure 3: Choosing the multiplicity threshold for error correction. All k-mers appearing in the reads
are classified as correct if they appear in the genome and incorrect otherwise. For a multiplicity =z,
let correct(x)/incorrect(x) be the number of correct/incorrect k-mers with multiplicity  (the plots
are shown for 50 base long Illumina reads from a human BAC and k = 20). As expected, most high-
multiplicity k-mers are correct and most low-multiplicity k-mers are incorrect. A Poisson/Gaussian
mixture model was fit to the distribution of all k-mer multiplicities in order to model the process
of generating incorrect (Poisson) and correct k-mers (Gaussian). To show the fit of the model,
the k-mer multiplicities were generated according to the estimated parameters A=0.95, y=25, and
0=9.38, with a mixing parameter w = 0.95. One may find the multiplicity m with good separation
between correct and incorrect k-mers by estimating the first local minimum from the distribution of
k-mer counts, or the minimum of the sum of the probabilities of the mixture model, a more smooth
distribution. For multiplicity threshold m=5, only 0.6% of correct 20-mers have multiplicity <5
and only 0.3% of incorrect 20-mers have multiplicity >5.
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readgng

(b)

Figure 4: (a) A fragment of a made-up repeat graph formed by three divergent copies of a repeat.
There are many possible paths from readg;q,+ to reade,q. To transform the mate-pair “readgzges -
GAP of length d - read,,, ;° into a mate-read “readg;4y4 - SEQUENCE of length d - read ,,;”, we
compute the support for every path between readg;q,+ and read.,q and select a path with maximum
support. In this example, the “red” path P; has greater support than the “blue” path P,. (b) A
fragment of the real repeat graph of E. coli (constructed from ECOLI dataset) illustrating that
transformation of mate-pairs into mate-reads may fail in some cases. Red edges represent unique
(typically long) contigs while black edges represent repeats.
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Figure 5: Mapping reads to the paths in the repeat graph. In (a) a read maps to a single edge. In
(b) a read maps to two paths, and the closest one is chosen. In (c) a read may be mapped to two
similar paths implying that trimming is required.

Cumulative lenght of contigs

——— EULER-USR (mate-pairs)
Velvet (mate-pairs)
rrrrrr EULER-USR

----- Velvet
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0 100 200 300 400 500 600

Contig index

Figure 6: Comparison of EULER-USR and Velvet using both paired reads, and the same reads
with mate-pair information removed (ECOLI dataset). The contigs are ordered in the decreasing
order of sizes and the cumulative size of x longest contigs is shown on the y-axis.
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Figure 7: Comparison of EULER-USR (threading) and Velvet. In each plot, the contigs are ordered
in the decreasing order of sizes and the cumulative size of z longest contigs is shown on the y-axis
(only contigs longer than 100 bases are shown). See Table 3 for the choice of parameters of all
programs in these plots. For all assemblies of the BAC, the locations of the contigs closest to
lengths 5000, 2000, 1000, and 500 bases are shown with a ”+” mark.
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Figure 8: Statistics of assembly for various read coverages (E. coli genome). The cumulative length

of contigs in order of decreasing length is shown for the 1000 longest contigs. The cumulative length
of contigs of the repeat graph on the genome is shown as a dashed line.
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