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ABSTRACT
For the last twenty years fragment assembly in DNA se-
quencing followed the “overlap - layout - consensus” paradigm
that is used in all currently available assembly tools. Al-
though this approach proved to be useful in assembling clones,
it faces difficulties in genomic shotgun assembly: the exist-
ing algorithms make assembly errors and are often unable to
resolve repeats even in prokaryotic genomes. Biologists are
well-aware of these errors and are forced to carry additional
experiments to verify the assembled contigs.

We abandon the classical “overlap - layout - consensus” ap-
proach in favor of a new Eulerian Superpath approach that,
for the first time, resolves the problem of repeats in frag-
ment assembly. Our main result is the reduction of the
fragment assembly to a variation of the classical Eulerian
path problem. This reduction opens new possibilities for
repeat resolution and allows one to generate error-free so-
lutions of the large-scale fragment assembly problems. The
major improvement of EULER over other algorithms is that
it resolves all repeats except long perfect repeats that are
theoretically impossible to resolve without additional exper-
iments.

1. INTRODUCTION
For the last twenty years fragment assembly in DNA se-
quencing mainly followed the “overlap - layout - consen-
sus” paradigm, that is used in all currently available soft-
ware tools for fragment assembly [?, 2, 18, 7]. Although
this approach proved to be useful in assembling contigs of
moderate sizes, it faces difficulties while assembling prokary-
otic genomes a few million bases long. These difficulties led
to introduction of the double-barreled DNA sequencing [17,
21] that uses additional experimental information for assem-
bling large genomes in the framework of the same “overlap

- layout - consensus” paradigm [11].

Although the classical approach culminated in some excel-
lent fragment assembly tools (Phrap, CAP3, TIGR, and
Celera assemblers are among them), critical analysis of the
“overlap - layout - consensus” paradigm reveals some weak
points. First, the overlap stage finds pairwise similarities
that do not always provide true information on whether the
fragments (sequencing reads) overlap. A better approach
would be to reveal multiple similarities between fragments
since sequencing errors tend to occur at random positions
while the differences between repeats are always at the same
positions. However, this approach is infeasible due to high
computational complexity of the multiple alignment prob-
lem. Another problem with the conventional approach to
fragment assembly is that finding the correct path in the
overlap graph with many false edges (layout problem) be-
comes very difficult.

Unfortunately, these problems are difficult to overcome in
the framework of the “overlap - layout - consensus” approach
and the existing fragment assembly algorithms are often un-
able to resolve the repeats even in prokaryotic genomes.
Inability to resolve repeats and to figure out the order of
contigs leads to additional experimental work to complete
the assembly [19]. Moreover all the programs we tested
made errors while assembling shotgun reads from the bacte-
rial sequencing projects Campylobacter jejuni [13], Neisseria
meningitidis [12], and Lactococcus lactis [1]. Biologists at
large sequencing centers are well-aware of potential assem-
bly errors and are forced to carry additional experimental
tests to verify the assembled contigs. Bioinformaticians are
also aware of assembly errors as evidenced by finishing soft-
ware that supports experiments correcting these errors [4].

How can one resolve these problems? Surprisingly enough,
an unrelated area of DNA arrays provides a hint. Sequenc-
ing by Hybridization (SBH) is a 10-years old idea that never
became practical but (indirectly) created the DNA arrays
industry. Conceptually, SBH is similar to fragment assem-
bly, the only difference is that the “reads” in SBH are much
shorter l-tuples. In fact, the very first attempts to solve
the SBH fragment assembly problem [3, 9] followed the
“overlap-layout-consensus” paradigm. However, even in a
simple case of error-free SBH data, the corresponding lay-



out problem leads to the NP-complete Hamiltonian Path
Problem. Pevzner, 1989 [15] proposed a different approach
that reduces SBH to an easy-to-solve Eulerian Path Problem
in the de Bruijn graph by abandoning the “overlap-layout-
consensus” paradigm.

Since the Eulerian path approach transforms a once diffi-
cult layout problem into a simple one, a natural question
is: “Could the Eulerian path approach be applied to frag-
ment assembly?”. Idury and Waterman, 1995 answered this
question by mimicking the fragment assembly problem as
an SBH problem [8]. They represented every read of length
n as a collection of n − l + 1 l-mers and applied an Eule-
rian path algorithm to a set of l-tuples formed by the union
of such collections for all reads. At the first glance this
transformation of every read into a collection of l-tuples is
a very short-sighted procedure since information about the
sequencing reads is lost. However, the loss of information is
minimal for large l and is well paid for by the computational
advantages of the Eulerian path approach in the resulting
easy-to-analyze graph. Not to mention that the lost infor-
mation can be easily restored at the later stages.

Unfortunately, the Idury-Waterman approach, while very
promising, did not scale up well. The problem is that the
sequencing errors transform a simple de Bruijn graph (cor-
responding to an error-free SBH) into a tangle of erroneous
edges. For a typical sequencing project, the number of
erroneous edges is a few times larger than the number of
real edges and finding the correct path in this graph is ex-
tremely difficult, if not impossible task. Moreover, repeats
in prokaryotic genomes pose serious challenges even in the
case of error-free data since the de Bruijn graph gets very
tangled and difficult to analyze.

This paper abandons the classical “overlap-layout-consensus”
approach in favor of a new Eulerian superpath approach.
Our main result is the reduction of the fragment assembly
problem to a variation of the classical Eulerian path prob-
lem. This reduction opens new possibilities for repeat res-
olution and leads to the EULER software that generated
optimal solutions for the large-scale assembly projects that
were studied.

2. NEW IDEAS
Given two similar reads, how can we decide whether they
correspond to the same region (i.e. the differences between
them are due to sequencing errors) or to two copies of a
repeat located in different parts of the genome? This prob-
lem is crucial for all fragment assembly algorithms and pair-
wise comparison used in the conventional algorithms does
not adequately resolve this problem. Our error-correction
procedure implicitly uses multiple comparison of reads and
successfully distinguishes these two situations.

Both Idury and Waterman, 1995 [8] and Myers,1995 [10]
tried to deal with errors and repeats via graph reductions. In
fact, there are some conceptual similarities between [8] and
[10] (although the corresponding graphs are very different).
However, both these methods do not explore multiple align-
ment of reads to fix sequencing errors at the pre-processing
stage. Of course, multiple alignment of reads is costly and
pairwise alignment is the only realistic option at the over-

lap stage of the conventional fragment assembly algorithms.
However, the multiple alignment becomes feasible when we
deal with perfect or nearly perfect matches of short l-tuples,
exactly the case in the SBH approach to fragment assembly.
Our error correction idea utilizes the multiple alignment of
short substrings to modify the original reads and to cre-
ate a new instance of the fragment assembly problem with
the greatly reduced number of errors. The error correction
makes our reads almost error-free and transforms the orig-
inal very large graph into a graph with very few erroneous
edges. In some sense, the error correction is a variation of
the consensus step taken at the very first step of fragment
assembly (rather than at the last one as in the conventional
approach).

Imagine an ideal situation when the error-correction proce-
dure eliminated all errors and we deal with a collection of
error-free reads. Is there an algorithm to reliably assemble
such error-free reads in a large-scale sequencing project? At
the first glance, the problem looks simple, but surprisingly
enough, the answer is no: we are unaware of any algorithm
that solves this problem. For example, Phrap, CAP3 and
TIGR assemblers make 17, 14, and 9 assembly errors corre-
spondingly while assembling real reads from the N. menin-
gitidis genome. All these algorithms still make errors while
assembling the error-free reads from the N. meningitidis
genome (although the number of errors reduces to 5, 4, and 2
correspondingly). Although the TIGR assembler makes less
errors than other programs, this accuracy does not come for
free, since this program produces twice as many contigs as
do the other programs. EULER made no assembly errors
and produced less contigs with real data than other pro-
grams produced with error-free data! EULER can be also
used to immediately improve the accuracy of Phrap, CAP3
and TIGR assemblers: these programs produce better as-
semblies if they use error-corrected reads from EULER.

To achieve such accuracy, EULER has to overcome the bot-
tleneck of the Idury-Waterman approach and to restore in-
formation about sequencing reads that was lost in the con-
struction of the de Bruijn graph. Our second Eulerian Su-
perpath idea addresses this problem. Every sequencing read
corresponds to a path in the de Bruijn graph called a read-
path. An attempt to take into account the information about
the sequencing reads leads to the problem of finding an Eule-
rian path that is consistent with all read-paths, an Eulerian
Superpath Problem. Below we show how to solve this prob-
lem.

This simple description hides some algorithmic challenges
that will be discussed later.

3. ERROR CORRECTION
Sequencing errors make implementation of the SBH-style
approach to fragment assembly difficult. To bypass this
problem we reduce the error rate by a factor of 35-50 at
the pre-processing stage and make the data almost error-
free by solving the Error Correction Problem. We use the
N. meningitidis (NM) sequencing project completed at the
Sanger Center [12] as an example. NM is one of the most
“difficult-to-assemble” bacterial genome completed so far. It
has 126 long perfect repeats up to 3832 bp in length (not to
mention many imperfect repeats). The length of the genome



is 2,184,406 bp. The sequencing project resulted in 53263
reads of average length 400 (average coverage is 9.7). There
were 255,631 errors overall distributed over these reads. It
results in 4.8 errors per read (error rate of 1.2%).

Let s be a sequencing read (with errors) derived from a
genome G. If the sequence of G is known then the error
correction in s can be done by aligning the read s against the
genome G. In real life, the sequence of G is not known until
the very last ”consensus” stage of the fragment assembly. It
is a catch-22: to assemble a genome it is highly desirable to
correct errors in reads first, but to correct errors in reads one
has to assemble the genome first. To bypass this catch-22,
let’s assume that, although the sequence of G is unknown,
the set Gl of all continuous strings of fixed length l (l-tuples)
present in G is known. Of course, Gl is unknown either,
but Gl can be reliably approximated without knowing the
sequence of G. An l-tuple is called solid if it belongs to more
thanM reads (where M is a threshold) and weak otherwise.
A natural approximation for Gl is the set of all solid l-tuples
from a sequencing project.

Let T be a collection of l-tuples called a spectrum. A string
s is called a T -string if all its l-tuples belong to T . Our
approach to error correction leads to the following

Spectral Alignment Problem. Given a string s and a
spectrum T , find the minimum number of mutations in s
that transform s into a T -string.

A similar problem was considered by Peer and Shamir, 2000 [14],
in a different context of resequencing by hybridization. In
the context of error corrections, the solution of the Spectral
Alignment Problem makes sense only if the number of muta-
tions is small. In this case the Spectral Alignment Problem
can be efficiently solved by dynamic programming even for
large l (compare with [14]).

Spectral alignment of a read against the set of all solid l-
tuples from a sequencing project, suggests the error correc-
tions that may change the sets of weak and solid l-tuples.
Iterative spectral alignments with the set of all reads and all
solid l-tuples gradually reduce the number of weak l-tuples,
increase the number of solid l-tuples, and reads and all solid
l-tuples gradually reduce the number of weak l-tuples, in-
crease the number of solid l-tuples, and lead to elimination
of many errors in bacterial sequencing projects. Although
the Spectral Alignment Problem helps to eliminate errors
(and we use it as one of the steps in EULER) it does not
adequately capture the specifics of the fragment assembly.
The Error Correction Problem described below is somewhat
less natural than the Spectrum Alignment Problem but it is
probably a better model for fragment assembly (although it
is not a perfect model either). The greedy heuristics for the
Error Correction Problem eliminates up to ≈ 97% of errors
in a typical bacterial project.

Given a collection of reads (strings) S = {s1, . . . , sn} from a
sequencing project and an integer l, the spectrum of S is a
set Sl of all l-tuples from the reads s1, . . . , sn and s1, . . . , sn,
where s denotes a reverse complement of read s. Let ∆ be
an upper bound on the number of errors in each DNA read.
A more adequate approach to error correction motivates the

error

erroneous l-tuples in
the sequencing read

erroneous l-tuples in
the complementary
sequencing read

 sequencing read

Figure 1: An error in a read affects l l-tuples in
this read and l l-tuples in the complementary read,
creating 2l erroneous l-tuples.

following

Error Correction Problem. Given S, ∆, and l, introduce
up to ∆ corrections in each read in S in such a way that |Sl|
is minimized.

An error in a read s affects at most l l-tuples in s and l
l-tuples in s (Fig. 1) and usually creates 2l erroneous l-
tuples that point out to the same sequencing error (2d for
positions within a distance d < l from the endpoint of the
reads). Therefore a greedy approach for the Error Correc-
tion Problem is to look for an error correction in the read
s that reduces the size of Sl by 2l (or 2d for positions close
to the endpoints of the reads). This simple procedure al-
ready eliminates 86.5% of errors in sequencing reads. Below
we describe a more involved approach that eliminates 97.7%
of sequencing errors. This approach transforms the original
fragment assembly problem with 4.8 errors per read on av-
erage into an almost error-free problem with 0.11 errors per
read on average.

Two l-tuples are called neighbors if they are one mutation
apart. For an l-tuple a define its multiplicity m(a) as the
number of reads in S containing this l-tuple. An l-tuple is
called an orphan if (i) it has small multiplicity, i.e., m(a) ≤
M , where M is a threshold, (ii) it has the only neighbor b,
and (iii) m(b) ≥ m(a). The position where an orphan and
its neighbor differ is called an orphan position. A sequencing
read is orphan-free if it contains no orphans.

An important observation is that each erroneous l-tuple cre-
ated by a sequencing error usually does not appear in other
reads and is usually one mutation apart from a real l-tuple
(for an appropriately chosen l). Therefore, a mutation in a
read usually creates 2l orphans. This observation leads to an
approach that corrects errors in orphan positions within the
sequencing reads, if the overall number of error corrections
in a given read to make it orphan-free is at most ∆. The
greedy orphan elimination approach to the Error Correction
Problem starts error corrections from the orphan positions
that reduce the size of Sl by 2l (or 2d for positions at distance
d < l from the endpoints of the reads). After correcting all
such errors the “2l condition” gradually transforms into a
weaker 2l − δ condition.



4. ERROR CORRECTION OR DATA COR-
RUPTION?

A word of caution is in place. Our error-correction proce-
dure is not perfect while deciding which nucleotide, among,
let’s say, A or T is correct in a given l-tuple within a read.
If the correct nucleotide is A, but T is also present in some
reads covering the same region, the error-correction proce-
dure may assign T instead of A to all reads, i.e., to intro-
duce an error, rather than to correct it (particularly, in the
low-coverage regions). Since our algorithm sometimes intro-
duces errors, data corruption is probably a more appropriate
name for this approach! Introducing an error in a read is
not such a bad thing as long as the errors from overlapping
reads covering the same position are consistent (i.e., they
corresponds to a single mutation in a genome). An impor-
tant insight is that, at this stage of the algorithm, we don’t
care much whether we correct or introduce errors in the se-
quencing reads. From algorithmic perspective, introducing
an error, which simply corresponds to changing a nucleotide
in a final assembly, is not a big deal. It is much more im-
portant to make sure that we eliminate a competition be-
tween A and T at this stage, thus reducing the complexity
of the de Bruijn graph. In this way we eliminate false edges
in our graph and deal with this problem later: the correct
nucleotide can be easily reconstructed at the final consen-
sus stage of the algorithm. For N. meningitidis sequencing
project, orphan elimination corrects 234410 errors, and in-
troduces 1452 errors. It leads to a tenfold reduction in the
number of sequencing errors (0.44 errors per read).

The orphan elimination procedure is usually run withM = 2
since orphan elimination with M = 1 leaves some errors un-
corrected. For a sequencing project with coverage 10 and
error rate 1%, every solid 20-tuple has on average 2 orphans
o1 and o2, each with multiplicity 1 (i.e., an expected mul-
tiplicity of this 20-tuple is 8 rather than 10 as in the case
of error-free reads). With some probability, the same er-
rors in (different) reads correspond to the same position in
the genome thus “merging” o1 and o2 into a single l-tuple
o with m(o) = 2. Although the probability of such event is
relatively small, the overall number of such cases is large for
large genomes. In our studies of bacterial genomes setting
M = 2 and simultaneous correction of up to M multiple
errors worked well in practice. With M = 2, we eliminated
additional 705 errors and created 131 errors (21837 errors,
or 0.41 errors per read are left).

Orphan elimination is a more conservative procedure than
spectral alignment. Orphans were defined as l-tuples of low
multiplicity that have only one neighbor. The latter condi-
tion (that is not captured by the spectral alignment) is im-
portant since in the case of multiple neighbors it is not clear
how to correct an error in an orphan. For the N. meningi-
tidis genome there were 1862 weak 20-mers (M ≤ 2) that
had multiple neighbors. Our approach to this problem is
to increase l in a hope that there is only one “competing”
neighbor for longer l. After increasing l from 20 to 100,
the number of orphans with multiple neighbors have been
reduced from 1862 to 17.

Orphan elimination should be done with caution since errors
in reads are sometimes hard to distinguish from differences
in repeats. If we treated the differences between repeats

(particularly repeats with low coverage) as errors, then or-
phan elimination would correct the differences between re-
peats instead of correcting errors. This may lead to inability
to resolve repeats at the later stages.

It is important to realize that error corrections in orphan
positions often create new orphans. Imagine a read contain-
ing an imperfect low-coverage (≤ M) copy of a repeat that
differs from a high-coverage (> M) copy of this repeat by a
substitution of a block of t consecutive nucleotides. With-
out knowing that we deal with a repeat, the orphan elimina-
tion procedure would first detect two orphans, one of them
ending in the first position of the block, and the other one
starting in the last position of the block. If the orphans are
eliminated without checking the “at most ∆ corrections per
read” condition, these two error corrections will shrink the
block to the size t − 2 and will create two new orphans in
the beginning and the end of this shrunk block. At the next
step, this procedure would correct the first and the last nu-
cleotides in the shrunk block, and, in just t/2 steps, erase
the differences between two copies of the repeat.

Of course, for long bacterial genomes many “bad” events
that may look improbable happen and there are two types
of errors that are prone to orphan elimination. They re-
quire a few coordinated error corrections since single error
corrections do not lead to a significant reduction in the size
of Sl and thus may be missed by the greedy orphan elimina-
tion. These errors include: (i) consecutive or closely-spaced
errors in the same read and (ii) the same error with high
multiplicity (> M) at the same genome position in different
reads.

The first type of error is best addressed by solving the Spec-
tral Alignment Problem to identify reads that require less
than ∆ error corrections. We found that some reads from
the N. meningitidis project have very poor spectral align-
ment. These reads are likely to represent contamination,
vector, isolated reads, or an error in the sequencing pipeline
[4]. All these reads are of limited interest and should be
discarded. In fact, it is a common practice in sequencing
centers to discard such “poor-quality” reads and we adopt
this approach. Although deleting poor-quality reads may
slightly reduce the amount of available sequencing informa-
tion, it greatly simplifies the assembly process. Another
important advantage of spectral alignment is an ability to
identify the chimeric reads. Such reads are characterized by
good spectral alignments of the prefix and suffix parts, that,
however, cannot be extended to a good spectral alignment
of the entire read. EULER breaks the chimeric reads into
two or more pieces and preserves the sequencing information
from their prefix and suffix parts.

The second type of error reflects the situation with M iden-
tical errors in different reads corresponding to the same
genome position and generating an erroneous l-tuple with
high multiplicity. For example, if both the correct and er-
roneous l-tuples have multiplicity 3 (with default threshold
M = 2), it is hard to decide whether we deal with a unique
region (with coverage 6) or with two copies of an imperfect
repeat (each with coverage 3). In the N. meningitidis project
there were 1610 errors with multiplicity 3 and larger. Due
to page limitation, the algorithm to correct high-multiplicity



errors will be described elsewhere.

5. EULERIAN SUPERPATH PROBLEM
As we have discussed, the idea of the Eulerian path approach
to SBH is to construct a graph whose edges correspond to
l-tuples and to find a path visiting every edge of this graph
exactly once.

Given a set of reads S = {s1, . . . , sn}, define the de Bruijn
graph G(Sl) with vertex set Sl−1 (the set of all (l−1)-tuples
from S) as follows. An (l − 1)-tuple v ∈ Sl−1 is joined by a
directed edge with an (l − 1)-tuple w ∈ Sl−1, if Sl contains
an l-tuple for which the first l − 1 nucleotides coincide with
v and the last l−1 nucleotides coincide with w. Each l-tuple
from Sl corresponds to an edge in G.

If S contains the only sequence s1, then this sequence cor-
responds to a path visiting each edge of G exactly once, an
Eulerian path [16]. Finding Eulerian paths is a well-known
problem that can be efficiently solved. The reduction from
SBH to the Eulerian path problem described above assumes
unit multiplicities of edges (no repeating l-tuples) in the de
Bruijn graph (see below for a discussion on multiple edges).
We usually assume that S contains a direct complement of
every read. In this case, G(Sl) includes reverse complement
for every l-tuple and the de Bruijn graph can be partitioned
into 2 subgraphs, one corresponding to a “canonical” se-
quence, and another one to its reverse complement.

With real data, the errors hide the correct path among many
erroneous edges. The overall number of vertices in the graph
corresponding to the error-free data from the NM project is
4,039,248 (roughly twice the length of the genome), while the
overall number of vertices in the graph corresponding to real
sequencing reads is 9,474,411 (for 20-mers). After the error-
correction procedure this number is reduced to 4,081,857.

A vertex v is called a source if indegree(v) = 0, a sink if
outdegree(v) = 0 and a branching vertex if indegree(v) ·
outdegree(v) > 1. For the N. meningitidis genome, the
de Bruijn graph has 502,843 branching vertices for original
reads (for l-tuple size 20). Error corrections simplifies this
graph and leads to a graph with 382 sources and sinks and
12,175 branching vertices. The error-free reads lead to a
graph with 11173 branching vertices.

Since the de Bruijn graph gets very complicated even in the
error-free case, taking into account the information about
what l-tuples belong to the same reads (that was lost after
the construction of the de Bruijn graph) helps us to untangle
this graph.

A path v1 . . . vn in the de Bruijn graph is called a repeat if
indegree(v1) > 1, outdegree(vn) > 1, and outdegree(vi) =
1 for 1 ≤ i ≤ n−1 (Fig. 2). Edges entering the vertex v1 are
called entrances into a repeat while edges leaving the vertex
vn are called exits from a repeat. An Eulerian path visits a
repeat a few times and every such visit defines a pairing be-
tween an entrance and an exit. Repeats may create problems
in fragment assembly since there are a few entrances in a re-
peat and a few exits from a repeat but it is not clear which
exit is visited after which entrance in the Eulerian path.
However, most repeats can be resolved by read-paths (i.e.,

v1 v2 vnvn-1

Figure 2: A repeat v1 . . . vn and a system of paths
overlapping with this repeat. The uppermost path
contains the repeat and defines the correct pairing
between the corresponding entrance and exit. If this
path were not present, the repeat v1 . . . vn would be-
come a tangle.

paths in the de Bruijn graph that correspond to sequencing
reads) covering these repeats. A read-path covers a repeat
if it contains an entrance into this repeat and an exit from
this repeat. Every covering read-path reveals some informa-
tion about the correct pairings between entrances and exits.
However, some parts of the de Bruijn graph are impossible
to untangle due to long perfect repeats that are not covered
by any read-paths. A repeat is called a tangle if there is no
read-path containing this repeat (Fig. 2). Tangles create
problems in fragment assembly since pairings of entrances
and exits in a tangle cannot be resolved via the analysis of
read-paths. To address this issue we formulate the following
generalization of the Eulerian Path Problem:

Eulerian Superpath Problem. Given an Eulerian graph
and a collection of paths in this graph, find an Eulerian path
in this graph that contains all these paths as subpaths.

The classical Eulerian Path Problem is a particular case of
the Eulerian Superpath Problem with every path being a
single edge. To solve the Eulerian Superpath Problem we
transform both the graph G and the system of paths P in
this graph into a new graph G1 with a new system of paths
P1. Such transformation is called equivalent if there exists
a one-to-one correspondence between Eulerian superpaths
in (G,P) and (G1,P1). Our goal is to make a series of
equivalent transformations

(G,P)→ (G1,P1)→ . . . → (Gk,Pk)

that lead to a system of paths Pk with every path being
a single edge. Since all transformations on the way from
(G,P) to (Gk,Pk) are equivalent, every solutions of the Eu-
lerian Path Problem in (Gk,Pk) provides a solution of the
Eulerian Superpath Problem in (G,P)

Below we describe a simple equivalent transformation that
solves the Eulerian Superpath Problem in the case when
the graph G has no multiple edges. Let x = (vin, vmid)
and y = (vmid, vout) be two consecutive edges in graph G
and let Px,y be a collection of all paths from P that include
both these edges as a subpath. Define P→x as a collection
of paths from P that end with x and Py→ as a collection
of paths from P that start with y. The x,y-detachment is
a transformation that adds a new edge z = (vin, vout) and
deletes the edges x and y from G (Fig. 3). This detachment
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P x
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Figure 3: x, y-detachment is an equivalent transfor-
mation reducing the number of edges in the graph.

alters the system of paths P as follows: (i) substitute z
instead of x, y in all paths from Px,y, (ii) substitute z instead
of x in all paths from P→x, and (iii) substitute z instead of y
in all paths from Py→. Informally, detachment bypasses the
edges x and y via a new edge z and directs all paths in P→x,
Py→, and Px,y through z. Since every detachment reduces
the number of edges in G, the detachments will eventually
shorten all paths from P to single edges and will reduce the
Eulerian Superpath Problem to the Eulerian Path Problem.

However, in the case of graphs with multiple edges, the
detachment procedure described above may lead to non-
equivalent transformations. In this case, the edge x may
be visited many times in the Eulerian path and it may or
may not be followed by the edge y on some of these vis-
its. That’s why, in case of multiple edges, “directing” all
paths from the set P→x through a new edge z may not be
an equivalent transformation. However, if the vertex vmid

has no other incoming edges but x, and no other outgoing
edges but y, then x, y-detachment is an equivalent transfor-
mation even if x and y are multiple edges. In particular,
detachments can be used to reduce every repeat to a single
edge.

It is important to realize that even in the case when the
graph G has no multiple edges, the detachments may create
multiple edges in the graphs G1, . . . , Gk (for example, if the
edge (vin, vout) were present in the graph prior to the de-
tachment procedure). However, such multiple edges do not
pose problems, since in this case it is clear what instance of
the multiple edge is used in every path (see below).

For illustration purposes, let’s consider a simple case when
the vertex vmid has the only incoming edge x = (vin, vmid)
with multiplicity 2 and two outgoing edges y1 = (vmid, vout1)
and y2 = (vmid, vout2), each with multiplicity 1 (Fig. 4). In
this case, the Eulerian path visits the edge x twice, in one
case it is followed by y1 and in another case it is followed
by y2. Consider an x, y1-detachment that adds a new edge
z = (vin, vout1) after deleting the edge y1 and one of two
copies of the edge x. This detachment (i) shortens all paths
in Px,y1 by substitution of x, y1 by a single edge z and (ii)
substitute z instead of y1 in every path from Py1→. This
detachment is an equivalent transformation if the set P→x is

vin vmid

vout1

vout2

x
y1

y2

P x

Px,y1

vin vmid

vout1

vout2

z

y2

P x

Px,y1

x

???

Py1
Py1

Figure 4: In the case when x is a multiple edge,
x, y1-detachment is an equivalent transformation if
P→x is empty. If P→x is not empty, it is not clear
whether the last edge of a path P ∈ P→x should be
assigned to z or to x.

empty. However, if P→x is not empty, it is not clear whether
the last edge of a path P ∈ P→x should be assigned to the
edge z or to the (remaining copy of) edge x.

To resolve this dilemma, one has to analyze every path P ∈
P→x and to decide whether it “relates” to Px,y1 (in this case
it should be directed through z) or to Px,y2 (in this case it
should be directed through x). By “relates” to Px,y1 (Px,y2)
we mean that every Eulerian superpath visits y1 (y2) right
after visiting P .

Two paths are called consistent if their union is a path again
(there is no branching vertices in their union). A path P
is consistent with a set of paths P if it is consistent with
all paths in P and inconsistent otherwise (i.e. if it is in-
consistent with at least one path in P). There are three
possibilities (Fig. 5)

• P is consistent with exactly one of the sets Px,y1 and
Px,y2.

• P is inconsistent with both Px,y1 and Px,y2.

• P is consistent with both Px,y1 and Px,y2.

In the first case, the path P is called resolvable since it can
be unambiguously related to either Px,y1 or Px,y2. If P
is consistent with Px,y1 and inconsistent with Px,y2 then
P should be assigned to the edge z after x, y1-detachment
(substitute x by z in P ). If P is inconsistent with Px,y1

and consistent with Px,y2 then P should be assigned to the
edge x (no action taken). An edge x is called resolvable if all
paths in P→x are resolvable. If the edge x is resolvable then
the described x, y-detachment is an equivalent transforma-
tion after the correct assignments of last edges in every path
from P→x. In our analysis of the NM genome we found that
18026 among 18962 edges in the de Bruijn graph are resolv-
able. Although we defined the notion of resolvable path for
a simple case in Fig. 3 when the edge x has multiplicity 2,
it can be generalized for edges with arbitrary multiplicities.

The second condition (P is inconsistent with both Px,y1 and
Px,y2) implies that the Eulerian Superpath Problem has no
solution, i.e., sequencing data are inconsistent. Informally,
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Figure 5: (a) P is consistent with Px,y1, but inconsistent with Px,y2; (b) P is inconsistent with both Px,y1 and
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in this case P , Px,y1 and Px,y2 impose three different sce-
nario for just two visits of the edge x. After discarding the
poor-quality and chimeric reads we did not encounter this
condition in our analysis of the NM genome.

The last condition (P is consistent with both Px,y1 and
Px,y2) corresponds to the most difficult situation and de-
serves a special discussion. If this condition holds for at
least one path in P→x, the edge x is called unresolvable and
we postpone the analysis of this edge until all resolvable
edges are analyzed. It may turn out that equivalent trans-
formation of other resolvable edges will make the edge x re-
solvable. Fig. 6 illustrates that equivalent transformations
may resolve previously unresolvable edges.

However, some edges cannot be resolved even after the de-
tachments of all resolvable edges are completed. Such situa-
tions usually correspond to tangles and they have to be ad-
dressed by another equivalent transformations called a cut.

Consider a fragment of graph G with 5 edges and four paths
y3−x, y4−x, x−y1 and x−y2, each path consisting of two
edges (Fig. 7). In this case P→x consists of two paths y3−x
and y4 − x and each of those paths is consistent with both
Px,y1 and Px,y2. In fact, in this symmetric situation, x is a
tangle and there is no information available to relate any of
path y3− x and y4− x to any of paths x − y1 and x − y2.
Therefore, it may happen that no detachment is an equiv-
alent transformation in this case. To address this problem,
we introduce another equivalent transformation that affects
the system of paths P and does not affect the graph G itself.

An edge x = (v, w) is removable if (i) it is the only outgoing
edge for v and the only incoming edge for w and (ii) x is
either initial or terminal edge for every for every path P ∈ P
containing x. An x-cut transforms P into a new system of
paths by simply removing x from all paths in P→x and Px→.

In the case of Fig.7, x-cut shortens the paths x− y1, x− y2,
y3 − x, and y4 − x to single-edge paths y1, y2, y3, and y4.
It is easy to check that an x-cut of a removable edge is an
equivalent transformation, i.e., every Eulerian superpath in
(G,P) corresponds to an Eulerian superpath in (G,P1) and
vice versa.

Cuts proved to be a powerful technique to analyze tangles
that are not amenable to detachments. Detachments reduce
such tangles to single unresolvable edges that turned out to
be removable in our analysis of bacterial genomes. It allowed
us to reduce the Eulerian Superpath Problem to the Eulerian
Path Problem for all studied bacterial genomes.

Although detachments and cuts are sufficient to reduce the
Eulerian Superpath Problem to the Eulerian Path Problem
for the studied bacterial genomes, there is still a gap in the
theoretical analysis of the Eulerian Superpath Problem in
the case when the systems of paths is not amenable to nei-
ther detachments, nor

The idea of equivalent graph transformations for fragment
assembly is conceptually similar to the idea of equivalent
graph transformations for genome rearrangements [?]. We
also emphasize that our equivalent transformation approach
is very different from the graph reduction techniques for
fragment assembly suggested in [8] and [10].

6. RESULTS
We tested EULER with real sequencing data from the C.
jejuni (CJ) [13], N. meningitidis (NM) [12], and L. lactis
(LL) [1] genomes (Table 1). These genomes were assembled
either by Phrap (CJ and NM) or by gap4 (LL) software
and required substantial finishing efforts to complete the
assembly and to correct the assembly errors.

Orphan elimination and spectral alignment already provide
a tenfold reduction in the error rate. However, further re-
ductions in error rate are important since they simplify the
de Bruijn graph and lead to the efficient solution of the
Eulerian Superpath Problem. After the error correction is
completed, the number of errors is reduced by a factor of
35− 50 making reads almost error-free.

To check the accuracy of the assembled contigs we fit [20]
each assembled contig into the genomic sequence via local
sequence alignment. A contig is assumed to be correct if it
fits into a genomic sequence as a continuous fragment with a
small number of errors. Inability to fit a contig into the ge-
nomic sequence with a small number of errors indicates that
the contig is misassembled. For example, Phrap misassem-
bles 17 contigs in the N. meningitidis sequencing project,
each contig containing up to four fragments from different
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parts of the genome. We break misassembled contig into
two or more fragments and fit each fragment separately into
different locations in the genome.

To compare EULER with other fragment assembly algo-
rithms, we ran Phrap, CAP3 and TIGR assemblers (default
parameters) for CJ, NM, and LL sequencing projects (Table
2 and Figure 8). Every box in Figure 8 corresponds to a con-
tig in NM assembly produced by these programs. Boxes in
the IDEAL assembly correspond to islands in the read cov-
erage. Boxes of the same shade show misassembled contigs,
for example two identically shaded boxes in different places
show the positions of contigs that were incorrectly assem-
bled into a single contig. In some cases, a single shaded box
shows a contig that was assembled incorrectly (i.e., there
was a rearrangement inside this contig). The tangles are
indicated by numbered boxes at the solid line showing the
genome.

For example, in the CJ sequencing project, there are 2 tan-
gles, one with multiplicity 3 and another with multiplicity 2.
EULER produces 29 contigs and we can prove that it is an
optimal assembly, i.e., no program can produce an assembly
with a smaller number of contigs. The CJ sequencing project
has 24 islands in the coverage and the overall multiplicity of
tangles in this project is 5. Since all these tangles belong to
different islands, the lower bound for the number of contigs
in any valid assembly is 24+5=29. An important advan-
tage of EULER is that it suggests five PCR experiments
that resolve all tangles and generate the IDEAL assembly.
This feature is particularly important for the LL project
since ≈ 50 PCR experiments would reduce the number of
reported contigs by a factor of tenfold.

The C. jejuni sequencing project is relatively simple due to
an unusually low number of long perfect repeats. However,
even in this relatively simple case, Phrap, CAP3, and TIGR
made assembly errors. This genome contains only four long
repeated sequences with similarity 90% and higher. How-
ever, only two of these four repeats contain long perfect
sub-repeats (tangles) and cannot be resolved even in theory.
EULER resolves two other repeats and breaks the contigs at
the positions of tangles to avoid potential assembly errors.
N. meningitidis contains hundreds of repeats, some of them
very long. Among these repeats 31 are tangles (each repeat-
ing four times on average) and extensive finishing work was
required to untangle them.

L. lactis has a fewer number of repeats than N. meningi-
tidis but it poses a different challenge: low coverage and
high error rate. Although EULER successfully assembled
this genome, further reduction in coverage and increase in
error rate would “break” EULER. Table 3 and Fig. 8 study
the question: “How low can EULER go (in coverage)?” by
deleting some reads and running EULER on this reduced
set of reads. These results indicate that EULER produces
a better assembly with coverage 7-8 than other programs
with the full coverage 9.7. The analysis of errors made by
EULER in these simulated low coverage projects indicates
that they are “reporting” rather than algorithmic errors.
The problem is that in the low-coverage regions (e.g., re-
gions with coverage 1), it is theoretically impossible to filter
our the chimeric reads (some chimeric reads may look like



perfectly legitimate reads). If such low-coverage regions are
not reported by EULER (they are subject to finishing efforts
anyway), then it becomes error-free again.

7. CONCLUSIONS
Finishing is a bottleneck in large-scale DNA sequencing.
Of course, finishing is an unavoidable step to extend the
islands and to close the gaps in read coverage. However,
the existing programs produce much more contigs then the
number of islands thus making finishing more complicated
than necessary. What is worse, these contigs are often as-
sembled incorrectly thus leading to time-consuming contig
verification step. EULER bypasses this problem since the
Eulerian Superpath approach transforms imperfect repeats
into different paths in the de Bruijn graph. As a result,
EULER does not even notice repeats unless they are long
perfect repeats, i.e., when the corresponding paths cannot
be separated. Tangles are theoretically impossible to resolve
and therefore some additional biochemical experiments are
needed to correctly position them.

Difficulties in resolving repeats led to the introduction of
the double-barreled DNA sequencing and the breakthrough
genome sequencing efforts at Celera [11]. The Celera assem-
bler is a two-stage procedure that includes masking repeats
at the overlap-layout-consensus stage with further ordering
of contigs via the double-barreled information. It did not
escape our attention that EULER has excellent scaling po-
tential and the work on integrating EULER with the double-
barreled data is now in progress. In fact, the complexity of
EULER is mainly defined by the number of tangles rather
than the number of repeats/length of the genome. We be-
lieve that assembly of some simple eukaryotic genomes with
a small number of tangles may be even less challenging for
EULER than the assembly of the N. meningitidis genome.
EULER does not require masking the repeats but instead
provides a clear view of the structure of the perfect repeats
(tangles) in the genome. These tangles may be resolved ei-
ther by double-barreled information or by additional PCR
experiments. These PCR experiments do not even require
sequencing of PCR products but can be done through sim-
ple length measurements of PCR products. Since only a
few PCR primers are needed to resolve each tangle, this
“on-demand” finishing method potentially may reduce the
cost of DNA sequencing as compared to the double-barreled
approach.

Since reliable programs for pure shotgun assembly of com-
plete genomes are still unavailable, the biologists are forced
to do time-consuming mapping, verification, and finishing
experiments to complete the assembly. As a result, most
bacterial sequencing projects today start from mapping, a
rather time-consuming step. Of course, mapping provides
some insurance against assembly errors but it is not a 100%-
proof insurance and it does not come for free. The only
computational reason for using mapping information is to
correct assembly errors and to resolve some repeats. EU-
LER promises to make mapping unnecessary for sequencing
applications, since it does not make errors, resolve all re-
peats but tangles, and suggests very few PCR experiments
to resolve tangles. The amount of experimental efforts asso-
ciated with these ”on demand” experiments is much smaller
than with mapping efforts.
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Figure 8: Comparative analysis of EULER, Phrap, CAP and TIGR assemblers as well as EULER on real
and simulated low-coverage sequencing data (N. meningitidis sequencing project). Shaded boxes correspond
to assembly errors.



Table 1: Assembly of reads from C. jejuni (CJ), N. meningitidis (NM), and L. lactis (LL) sequencing projects.
Project CJ NM LL
genome length 1,641,481 2,184,406 2,365,590
average read-length 502 400 568
# of islands in reads coverage 24 79 6
coverage 10.3 9.7 6.4
# of reads 33708 53263 26532
# of poor-quality reads 431 251 128
# of chimeric reads 611 874 935
error rate 1.6% 1.2% 2.1%
# of errors per read (on average) 8.0 4.8 11.9
# of errors per read after
orphan elimination/spectral alignment 0.84 0.36 1.4
correcting high-multiplicity errors 0.41 0.30 0.78
filtering poor-quality and chimeric reads 0.17 0.11 0.32
after error corrections
coverage 10.1 9.0 6.3
# of reads 32666 52138 25469
# consistent errors per read 0.16 0.10 0.27
# inconsistent errors per read 0.01 0.01 0.05
% of corrected errors 97.9% 97.7% 97.3%
before solving the Eulerian Superpath Problem
# of vertices in the de Bruijn graph (l = 20) 3,197,687 4,081,857 4,430,803
# of branching vertices (l = 20) 2132 12175 4873
after solving the Eulerian Superpath Problem
# of vertices in the de Bruijn graph (l = 20) 126 999 148
# of branching vertices (l = 20) 30 617 124
# of sources/sinks (l = 20) 96 382 24
# of edges 74 1028 63
# of connected single-edge components (l = 20) 26 112 48
# of connected components (l = 20) 33 122 62
# of tangles 2 31 16
overall multiplicity of tangles 5 126 61
maximum multiplicity of a tangle 3 21 9
running time (hours) 3 5 6
8 CPU 9Gb Sun Enterprise E4500/E5500

Table 2: Comparison of different software tools for fragment assembly. IDEAL is an imaginary assembler
that outputs the collection of islands in clone coverage as contigs. In the IDEAL column the number in
parenthesis shows the overall multiplicity of tangles.

IDEAL EULER Phrap CAP3 TIGR assembler
CJ # of contigs (# of misassembled contigs) 24(5) 29(0) 33 (2) 54 (3) > 300 (> 10)

coverage by contigs 99.5% 96.7% 94.0% 92.4% 90.0%
coverage by misassembled contigs - 0.0% 16.1% 13.6% 1.2%

NM # of contigs (# of misassembled contigs) 79(126) 149 (0) 160 (17) 163 (14) > 300(9)
coverage by the contigs 99.8% 99.1% 98.6% 97.2% 87.4%

coverage by misassembled contigs - 0.0% 10.5% 9.2% 1.3%
LL # of contigs (# of misassembled contigs) 6(61) 58 (0) 62 (10) 85 (8) 245 (2)

coverage by the contigs 99.9% 99.5% 97.6% 97.0% 90.4%
coverage by misassembled contigs - 0.0% 19.0% 11.4% 0.7%

Table 3: EULER’s performance with reduced coverage (NM sequencing project).
# of reads 53263 49420 43928 38437 35690
coverage 9.7 9.0 8.0 7.0 6.5
# of contigs (# of misassembled contigs) 149(0) 152(0) 175(0) 182(2) 185(3)
coverage by the contigs 99.5% 99.1% 98.5% 95.5% 94.8%
coverage by the misassembled contigs 0.0% 0.0% 0.0% 4.1% 6.2%


