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SHARCGS, a fast and highly accurate short-read
assembly algorithm for de novo genomic sequencing
Juliane C. Dohm,1 Claudio Lottaz,1,2 Tatiana Borodina,1 and Heinz Himmelbauer1,3

1Max-Planck-Institute for Molecular Genetics, 14195 Berlin-Dahlem, Germany; 2Institute for Functional Genomics,
Computational Diagnostics, University of Regensburg, 93053 Regensburg, Germany

The latest revolution in the DNA sequencing field has been brought about by the development of automated
sequencers that are capable of generating giga base pair data sets quickly and at low cost. Applications of such
technologies seem to be limited to resequencing and transcript discovery, due to the shortness of the generated
reads. In order to extend the fields of application to de novo sequencing, we developed the SHARCGS algorithm to
assemble short-read (25–40-mer) data with high accuracy and speed. The efficiency of SHARCGS was tested on BAC
inserts from three eukaryotic species, on two yeast chromosomes, and on two bacterial genomes (Haemophilus
influenzae, Escherichia coli). We show that 30-mer-based BAC assemblies have N50 sizes >20 kbp for Drosophila and
Arabidopsis and >4 kbp for human in simulations taking missing reads and wrong base calls into account. We
assembled 949,974 contigs with length >50 bp, and only one single contig could not be aligned error-free against
the reference sequences. We generated 36-mer reads for the genome of Helicobacter acinonychis on the Illumina 1G
sequencing instrument and assembled 937 contigs covering 98% of the genome with an N50 size of 3.7 kbp. With
the exception of five contigs that differ in 1–4 positions relative to the reference sequence, all contigs matched the
genome error-free. Thus, SHARCGS is a suitable tool for fully exploiting novel sequencing technologies by
assembling sequence contigs de novo with high confidence and by outperforming existing assembly algorithms in
terms of speed and accuracy.

[Supplemental material is available online at www.genome.org.]

For almost 20 years, the Sanger technique (Sanger et al. 1977) has
remained the gold standard for DNA sequence determination.
Despite many improvements on the original technology that
have boosted both read length and throughput, Sanger-based
sequencing of genomes is still a costly enterprise (Bentley 2006).
The sequencing field has experienced a major shift by the intro-
duction of innovative sequencing technologies developed by 454
Life Sciences and Solexa/Illumina, each capable of generating
sequence data at a fraction of the cost and much quicker when
compared to the Sanger method (Margulies et al. 2005; Bentley
2006). Present equipment sold by 454 Life Sciences allows gen-
eration of 100 Mbp of sequence data with 200- to 300-bp reads
within 8 h. The Illumina 1G sequencer generates up to 1.3 Gbp
in 25- to 36-bp reads in a single 80-h run. The advent of this second
generation of DNA sequencing technology raises the question
whether, despite the shortness of reads, accurate assembly can be
computed at an acceptable computational cost de novo.

For the assembly of sequence fragments of ∼500 bp in
length, a variety of sophisticated assembly algorithms have been
suggested, including PHRAP (Ewing and Green 1994), the TIGR
assembler (Sutton et al. 1995), CAP3 (Huang and Madan 1999),
the Celera assembler (Myers et al. 2000), ARACHNE (Batzoglou et
al. 2002; Jaffe et al. 2003), Phusion (Mullikin and Ning 2003),
and EULER (Pevzner et al. 2001). These algorithms proved useful
on very different shotgun sequencing projects, such as the fruit
fly genome (Adams et al. 2000), the draft of the pufferfish ge-
nome (Aparicio et al. 2002), and the mouse genome (Waterston
et al. 2002). In sequencing projects that use Sanger technology,

genomes are typically covered 6- to 10-fold. To assemble such
data sets, the algorithms described above put great emphasis on
the optimal exploitation of all reads. Issues like the correction of
sequencing errors and the assembly of reads containing mis-
matches increase the complexity of these algorithms. Due to
their complexity, existing assemblers are incapable of assembling
very large numbers of reads, even on very large computers.

Given the low cost of sequence data generated by second-
generation sequencing instruments, sequence fragments can be
provided to cover a target sequence in excess of 100-fold. When
the resulting huge numbers of very short reads are assembled,
simplicity becomes a virtue for an assembly algorithm. One ap-
proach to assemble reads as short as 25 bases was reported by
Warren et al. (2007). The described program SSAKE, however,
generates misassemblies due to contig extension across repeat
borders and due to difficulties in handling erroneous reads. Here,
we describe SHARCGS (SHort-read Assembler based on Robust
Contig extension for Genome Sequencing), which is capable of
assembling millions of very short reads, copes with sequencing
errors, and virtually never generates misassemblies.

In this paper, we first demonstrate the feasibility of assem-
blies using 25–40 base reads under idealized conditions, assum-
ing that all possible reads of a given length are available and no
sequencing errors are permitted. Next, we focus on a realistic
scenario, showing how to cope with missing reads and how to
detect reads that contain sequencing errors out of a large pool of
reads. We calculate assemblies for simulated reads of sequenced
BAC clones from Arabidopsis, Drosophila, and human, as well as
simulated reads of microbial sequences. Finally, we generate a
36-mer read data set from Helicobacter acinonychis (genome size
1.55 Mbp) on the Illumina 1G sequencing instrument and use
SHARCGS to assemble the genome based on these data.
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Article published online before print. Article and publication date are at http://
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Results and Discussion

Assembling simulated short read (25–40-mer) data under
idealized assumptions

Assuming that all possible reads are present in the data set, no
sequencing errors have occurred, and read length is fixed, the
quality of the assembly solely depends on intrinsic properties of
the sequence. We assembled simulated ideal 30-mer reads from a
set of 60 BAC insert sequences with an average length of 110 kbp
each, derived from Arabidopsis thaliana, Drosophila melanogaster,
and Homo sapiens (Table 1 and Supplementary Table 1). We
found between 1 (Drosophila, BAC supp20) and 520 (Human,
BAC supp26) SHARCGS contigs per BAC. As a quality measure for
the assembled SHARCGS contigs, we compared the N50 sizes of
the assemblies from different BACs. Both Arabidopsis and Dro-
sophila BACs had an average N50 length of >30 kbp, and human
BACs were assembled to an average N50 length of 5–6 kbp.

The results in Table 1 and Supplementary Table 1 highlight
the quality optimum that can be achieved in 30-mer-based as-
semblies. However, the assembly can be improved by using

longer reads. Figure 1 summarizes the N50 changes when contig
assembly is carried out with 25–40-mer reads, respectively, cal-
culated from assemblies with 20 BACs per species. There is a clear
tendency toward larger N50. For instance, an increase of read
length from 30 to 40 bases almost doubled N50 in all three spe-
cies. Longer reads have a better performance in bridging re-
gions of ambiguity or low complexity, resulting in larger se-
quence contigs.

Repeat content and assembly quality

To determine the influence of the repeat content on the assembly
quality, we analyzed the GenBank BAC sequences with Repeat-
Masker (www.repeatmasker.org). While human BACs, with the
exception of Y chromosome derived clones and a few outliers,
showed uniform repeat content (40%–55%), the Drosophila set
showed high variance with some BACs being almost repeat-free
(1% repeat content) and some containing >50% repetitive DNA.
The data show that a higher fraction of repetitive regions results
in shorter N50 lengths. We got the best SHARCGS assemblies in
Drosophila for BACs with a repeat content of ∼5% or lower, re-

Table 1. Properties of SHARCGS assemblies from 30-mer data sets encompassing all 30-mer reads that can be deduced from forward or
reverse strand; no sequence errors permitted

1 2 3 4 5 6 7 8 9 10 11
BAC no. Species GenBank Chr Seq. length RM (%) Contigs Mean Max N50 Seq. cov. (%)

1 A. tha AC011809 1 108,767 4.09 24 4,542 32,094 26,830 99.84
2 A. tha AC002328 1 109,171 2.94 54 2,035 32,921 14,265 99.61
3 A. tha AC064879 1 109,180 5.58 77 1,434 37,225 10,973 99.68
4 A. tha AC023673 1 109,367 5.97 25 4,389 70,167 70,167 99.91
5 A. tha AC011713 1 109,694 1.12 52 2,104 47,328 12,880 98.85
6 A. tha AC009243 1 110,565 3.32 6 18,445 50,152 46,029 100.00
7 A. tha AC022520 1 110,611 13.11 77 1,455 56,487 56,487 99.63
8 A. tha AC018460 1 110,619 32.29 304 257 8,344 595 66.48
9 A. tha AC007764 1 111,222 1.84 26 4,296 77,281 77,281 99.98

10 A. tha AC000348 1 111,566 8.87 68 1,641 33,596 24,191 98.78
Avg. Arabidopsis BAC 110,076 7.91 71 4,060 44,560 33,970 96.28

11 D. mel AC092191 X 80,919 23.50 12 6,732 31,781 14,385 99.52
12 D. mel AC185533 X 95,808 29.49 75 1,279 12,212 6,785 98.46
13 D. mel AC018485 2L 99,441 79.34 110 761 16,583 6,078 82.86
14 D. mel AC018478 4 103,809 18.72 32 3,256 22,314 9,375 99.90
15 D. mel AC092242 2L 111,023 1.53 2 55,520 74,708 74,708 100.00
16 D. mel AC018482 3R 113,821 65.10 201 519 8,608 3,273 87.42
17 D. mel AC185534 2L 119,461 52.85 81 1,486 16,177 6,642 99.42
18 D. mel AC092399 2L 122,013 5.25 8 15,260 87,494 87,494 99.92
19 D. mel AC007837 2R 123,647 1.88 16 7,740 57,613 27,133 99.90
20 D. mel AC007329 2R 126,140 2.67 10 12,628 78,984 78,984 99.99
Avg. Fruitfly BAC 109,608 28.03 55 10,518 40,647 31,486 96.74

21 H. sap AC112695 4 109,860 38.19LRSD 19 5,801 25,199 13,988 99.95
22 H. sap AC009300 2 109,939 47.32LRSD 100 1,113 14,508 6,952 99.70
23 H. sap AC103783 8 109,941 49.05LRSD 79 1,409 16,751 6,594 99.78
24 H. sap AC068860 11 110,019 52.00LRSD 87 1,283 16,073 4,504 99.99
25 H. sap AC092698 8 110,085 50.16LRSD 46 2,407 13,902 7,817 99.85
26 H. sap AC104134 2 110,127 50.33SLRD 203 555 8,351 1,944 99.63
27 H. sap AC092663 4 110,158 40.05LSRD 104 1,075 8,312 4,653 99.59
28 H. sap AC079795 4 110,185 52.15LSRD 117 957 7,771 2,993 99.72
29 H. sap AC121160 4 110,227 50.26LRSD 39 2,845 16,339 7,976 99.98
30 H. sap AC010104 Y 110,250 74.30LRSD 306 373 9,656 2,821 99.05
Avg. Human BAC 110,079 50.38 110 1,782 13,686 6,024 99.72

Rows 1–10: Arabidopsis thaliana BACs; rows 11–20: Drosophila melanogaster BACs; rows 21–30: Homo sapiens BACs. Rows “Avg.” indicate average values
for the parameters. Column labels: 1, BAC number; 2, species name (abbreviated); 3, GenBank accession number of BACs; 4, chromosome assignment;
5, length of BACs in bp; 6, percentage of bases masked using RepeatMasker [for BACs 21–30, superscripts indicate frequency of different repeat classes.
Frequency decreases from left to right. S, SINEs (ALUs, MIRs); L, LINEs (LINE1, LINE2, L3/CR1); R, LTR elements (MaLRs, ERVL, ERV_class I, ERV_class II);
D, DNA elements (MER1_type, MER2_type)]; 7, number of SHARCGS contigs > 50 bp; 8, average length of SHARCGS contigs in bp (only contigs >50
bp were counted); 9, size of largest resulting SHARCGS contig; 10, N50 length of SHARCGS assembly; 11, SHARCGS contig coverage of the source BAC
insert sequence. All SHARCGS contigs are 100% identical to the reference sequence.
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sulting in N50 of >57 kbp. Repeats that occur only once per BAC,
or which are very diverged, will essentially behave like single-
copy sequences and will not affect assembly quality. To assess
whether the number of low-complexity (LC) or simple repeats
(SR), as identified by RepeatMasker, have an effect on the assem-
bly quality, we counted the number of such sequence segments
per BAC. Arabidopsis BACs contained 40 LC/SRs on average, BACs
from Drosophila contained 44 LC/SRs, and human BACs con-
tained 37 LC/SRs (numbers based on clones in Table 1). Since the
N50 for human BAC assemblies are the lowest in our sample,
we conclude that LC/SRs in this data set have no effect onto
SHARCGS assembly. This is supported by closer inspection of the
data: For instance, Drosophila BAC 13 (N50 of 6 kbp) contained
19 LC/SRs, while BAC 18 contained 61 LC/SRs and had an N50 of
87 kbp. With very few exceptions, SHARCGS contigs covered the
inserts of BACs > 99%. Two outliers were BAC 13 and BAC 8. BAC
13 was exceptionally repeat-rich (79% repetitive DNA), while the
insert of BAC 8 (repeat content 32%) contained 38 kbp of highly
similar tandem repeats (Supplementary Fig. 1).

Assembling simulated short-read data with missing reads
and sequencing errors

Under real conditions, the number of reads that start at a given
position of the target sequence can vary so that more than one
read or none at all are available. In addition, a certain chance for
wrong base calls exists.

Missed positions (or “gaps”) result in decreased contig
lengths, as one can expect breaks to occur whenever contig ex-
tension fails due to missing reads. The more serious problem

might be wrong assembly if ambiguities (or “forks”) are not de-
tected because of missing reads. This problem and its solution
implemented in SHARCGS are illustrated in Figure 2. For each
read R that is to be assembled onto a contig, SHARCGS inspects
both the forward and reverse strand for ambiguities. Read R is
only used to extend the contig, if other reads matching the con-
tig with shorter overlaps do not lead to ambiguities. In this man-
ner, gaps can be checked safely for ambiguities (see Methods for
details).

In a BAC-based sequencing project, sequencing from BAC
pools increases efficiency in terms of time and money. The re-
sulting data sets contain reads from more than a single clone. The
sequencing technology itself can be used to discriminate be-
tween reads derived from individual clones by using indices. We
assumed distinguishable, barcoded BACs, and we simulated reads
for 1–16 different BACs per pool. Increasing the pool size implies
that fewer reads are available per BAC, and thus the coverage per
BAC is decreasing. Assuming 5 million 30-mer reads per sample,
the coverage is 1363/n, with n indicating the number of BACs per
pool (insert size 110 kbp per BAC).

Figure 1. Distributions of N50 values in relation to different read length
illustrated using box plots. An N50 length of x kbp indicates that 50% of
the source sequence is covered by contigs of x kbp or larger. The data was
collected from assemblies under perfect assumptions (all possible reads
are present exactly once, no sequencing errors), based on 20 BACs with
an average size of 110 kbp for each species. The boxes stretch from the
first to the third quartile of the respective distribution, thus covering 50%
of the corresponding data. The boxes are split with a line at the median.
For sake of clarity, the median value is given for each box plot. Whiskers
indicated with dashed lines are 1.5 times longer than the box but do not
stretch beyond minima and maxima. They are used to define the outliers,
data points outside the range of the whiskers, which are marked as small
circles.

Figure 2. Detection of ambiguities during contig elongation despite
missing read information. (A) Target sequence to assemble. Repetitive
segments are shown in gray, unique sequence segments are shown in
white and indicated with numbers. The positions of reads A–F and S are
also shown in panel A. These reads are used to explain the principles of
error-free contig extension in panels B–E. (B) Assembly under idealized
assumptions (all reads present). Read S to be elongated to the right. An
ambiguity is found, both reads B and D could extend read S; neither read
D nor B will be assembled. (C, D) Assembly under real assumptions, but
without robust contig extension. (C) Read S to be elongated to the right,
read B is missing so that the ambiguity cannot be detected; read D would
be assembled to S. (D) Naively built contig S1 will be elongated to the far
right end (not shown), then the elongation to the left starts, one crucial
read is missing again (read C) and the ambiguity cannot be detected;
read A would be assembled to contig S1, wrongly connecting sequence
segment 1 with sequence segment 3. (E) Assembly under real assump-
tions with SHARCGS’ robust contig extension. Different overlaps are
checked before assembling D, and if any ambiguity is found for smaller
overlaps the assembly of D will be rejected. Since both reads E and F could
be assembled to the read S, read D will not be assembled to read S.

Short-read de novo genome assemblies with SHARCGS
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To avoid assembling faulty reads, we assumed that it is un-
likely that the same error occurs multiple times in a data set of
limited size. Thus, the correct reads for a certain base must out-
number reads with a wrong base call at this position. By com-
paring the read counts, we are able to determine a read data set
that can be used for the assembly, e.g., reads that are present at
least three times. The number of correct reads per BAC decreases
with increasing complexity of the BAC pool, since fewer reads are
available for the individual BAC (Fig. 3A). For example, assuming
a sequencing error rate of 0.6%, threefold confirmation of a 30-
mer read results in 94% of reads retained in a pool of 5 BACs
(coverage ∼270-fold) and 65% of reads being retained in a pool of
10 BACs (coverage ∼135-fold), assuming average insert size of 110

kbp per BAC. Figure 3B indicates the proportion of false reads per
BAC that remain in the data set after applying a two- to fourfold
redundancy filtering, depending on pool size. Particularly for
small pools, twofold redundancy is not sufficient and the data set
contains many false reads. Conversely, three- to fourfold redun-
dancy checks constitute reliable filters that ensure that pools of
size two or larger will be essentially free of false reads (Fig. 3B).
Since fourfold redundancy filtering leads to a rapid decrease of
reads available for assembly, threefold filtering seems to be opti-
mal (Fig. 3A). However, SHARCGS adapts this filtering criterion
to the input data and combines contigs generated for up to three
filter settings. Furthermore, a second filtering step described in
more detail in the Methods section allows the use of reads which
are confirmed only twice.

We applied all the features above and assumed a sequencing
error rate of 0.6% to the assembly of the set of 60 BACs described
earlier (Fig. 4A–C). The SHARCGS assembly took ∼15 min per
BAC on a Dual Xeon 2.8-GHz 32-bit Linux machine with 4 GB of
RAM. In the context of these assemblies we calculated 942,380
contigs > 50 bp, corresponding to 489.59 Mbp. All these contigs,
with one single exception, could be aligned perfectly without
mismatches or gaps against the BAC reference sequences. The
only falsely assembled contig we observed was 57 bp in size and
was derived from reads from a conserved 30-bp inverted repeat
located within Drosophila BAC supp20 (GenBank AC099006).
From these data, we can conclude that our algorithm is perfectly
reliable with respect to assembling contigs de novo from short
reads and that our filtering to remove reads containing sequenc-
ing errors is efficient. The box plots in Figure 4A–C illustrate the
feasibility to assemble BACs from indexed pools. Noteworthy is
the relatively constant average N50 that is observed for pooled
clones, even though the variance is high because of sequence
differences inherent in BACs (see Table 1, e.g., repeat content). In
both Arabidopsis and Drosophila, 5–6 BACs can be pooled to still
achieve an N50 at ∼20 kbp, and for human BACs we find an N50
of 4–5 kbp for pools of up to 9 BACs. With increased pool sizes,
contigs become progressively shorter. This can be explained by
redundancy checks becoming so stringent that sufficient reads
are not retained for the assembly. Figure 5 shows this effect in
comparison to the N50 sizes of assemblies based on simulated
reads under ideal assumptions for different pool sizes.

Assembling simulated short-read data of microbial sequences

To further evaluate the prospects of SHARCGS, we assembled
yeast chromosomes and bacterial genomes based on simulated
30- or 32-mer data sets under realistic assumptions as described
above (missing reads, 0.6% sequencing error rate; Table 2). We
chose Saccharomyces cerevisiae chromosomes V (0.58 Mbp) and
VII (1.09 Mbp), as well as the genomes of Haemophilus influenzae
(1.94 Mbp) and E. coli (4.71 Mbp). Depending on sequencing
depth (coverage range 130- to 270-fold), we obtained an N50 of
up to 28 kbp for yeast chromosome V and up to 18 kbp for yeast
chromosome VII. The bacterial genomes (coverage range 95- to
164-fold) could be assembled with an N50 of 22 kbp (H. influen-
zae) and 16 kbp (E. coli). In all these assemblies the sequence
coverage exceeded 97% and all contigs were error-free, as deter-
mined by matching them back against the reference sequences.

Assembling Illumina short-read data of the H. acinonychis genome

In order to evaluate SHARCGS’ performance on real data, we
chose to sequence and assemble the genome of H. acinonychis, a

Figure 3. Read filtering and selection prior to assembly to avoid inclu-
sion of reads containing sequencing errors. (A) Proportion of correct
reads that remain in the data set by applying two- to fourfold redundancy
filtering (i.e., by counting reads present at least twice, threefold, or four-
fold in the data set) depending on BAC pool size (average insert size per
BAC 110 kbp). (B) Proportion of false reads that remain in the data set for
assembly after application of two- to fourfold redundancy filtering. Data
were simulated with 0.6% error rate.
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bacterial species isolated from the stomach of large felines. The
sequences of the H. acinonychis genome (1.55 Mbp) and of the H.
acinonychis plasmid pHac1 (3661 bp) were determined recently

with Sanger technology (Eppinger et al. 2006). The H. acinonychis
genome contains 38% GC and 90% coding regions (Eppinger et
al. 2006), and the total repeat content is 0.48% (7509 bp) accord-
ing to RepeatMasker analysis. In detail, RepeatMasker found five
reverse transcriptase homologs (340 bp, 0.02%), 14 small RNAs
(932 bp, 0.06%), 10 simple repeats (760 bp, 0.05%), and 141
low-complexity regions (5479 bp, 0.35%). Based on the same
DNA preparation that Eppinger and coworkers had used for
Sanger sequencing of the H. acinonychis genome, we generated
12.3 million 36-mer reads on the Illumina 1G sequencing instru-
ment (representing 272-fold coverage). To determine a per-base
error rate, we matched these reads against the H. acinonychis se-
quence using Illumina’s ELAND software. ELAND reported
110,569 reads matching to the plasmid and 8,278,979 reads
matching to the genome: 512,436 (4.2%) reads did not pass
ELAND’s quality check based on the first 32 base calls of each
read; 6,652,321 (54.1%) reads matched exactly to the reference
sequences (H. acinonychis or plasmid); 1,475,601 (12.0%) con-
tained one mismatch; 682,388 (5.6%) reads contained two mis-
matches; and 2,966,045 (24.1%) reads could not be matched to
the reference sequences. This translates into a per-base error rate
of at least 1.54% for the data set.

We removed reads containing unspecified bases from the
complete data set of 12.3 million reads and trimmed the last four
bases of each read. We assembled the remaining 11.8 million
reads without taking ELAND results into account, thus relying
exclusively on read filtering and assembly procedures imple-
mented within SHARCGS. Different from the assemblies based
on simulated reads described above, the filtering of Illumina read
data relied on the utilization of cumulative base quality values
(see Methods). We used four different base quality thresholds
(Q > 20, Q > 25, Q > 30, and Q > 35) to generate four read data
sets (Table 3a). For instance, the read data sets Q > 20 and Q > 35
contained 1,174,569 and 978,900 unique reads, respectively, to
be left for contig assembly. Each read data set was assembled
separately. Thereafter, we took advantage of SHARCGS’ feature to
automatically merge contigs generated from different filter set-
tings (Table 3b). The inclusion of reads that contain sequencing
errors (reads are retained when applying weak filtering criteria)
result in contig breaks, and missing reads (reads are removed
when applying strong filtering criteria) result in contig breaks,
too. However, runs with different filtering criteria result in contig
breaks at different positions. Merging overlapping contigs gener-
ated in different assembly runs therefore improves the assembly
quality (see Methods for details). In our case, assemblies from
single runs contained 1303–1948 contigs with N50 between 1558
and 2257 bp. For the final H. acinonychis assembly we merged the

Figure 4. Dependency of N50 on BAC pool size for three different
species (A–C). The data shown were collected from assemblies under
realistic assumptions, with an error rate of 0.6% per base call and reads
generated from randomly chosen positions. We mimic the BAC pool size
by generating the proportional number of reads, i.e., for pool size n, we
generate 5 million/n reads per BAC, corresponding to a coverage of
1363/n. BAC pool sizes (1–16) and corresponding coverages are indi-
cated at the bottom of the figure. For each species we used 20 BACs with
average length 110 kbp and simulated 30-mer data sets three times per
BAC. Thus, for each pool size distribution, 60 assembly results are shown
using box plots. Boxes stretch from the first to the third quartile of the
respective distribution and cover 50% of the corresponding data. The
median inside each box is indicated with a line. Whiskers (dashed lines)
are 1.5 times longer than the box but do not stretch beyond minima and
maxima and are used to define the outliers (small circles).
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contigs from these four assembly runs, resulting in an increased
N50 size by more than 50% relative to the best single assembly.
The final assembly of H. acinonychis contains 937 contigs that
cover 98% of the genome with an N50 of 3659 bp: 932 of these
contigs are error-free, and 5 contigs contain mismatches at 1–4
positions. In three of these five contigs, discrepancies between
the SHARCGS assembly and the reference sequence are supported
by 103, 117, or 198 Illumina reads, respectively. These high num-
bers of supporting reads suggest that the sequence based on Illu-
mina reads is correct. The remaining two discrepancies are lo-
cated at the ends of SHARCGS contigs.

The assembly described here was carried out entirely de
novo, i.e., solely depending upon the read sequences and base
quality values. We positioned the contigs on the reference ge-
nome and found that many contigs overlapped. By merging con-
tigs overlapping more than five bases, our assembly collapsed

into 228 contigs, increasing the N50 length 5.4-fold (Table 3d).
This suggests that microread-based assemblies can be improved
with modest additional effort, by carrying out a hybrid assembly
together with low, e.g., one- or twofold coverage of the target
genome in 454 or Sanger reads.

Comparative evaluation of SHARCGS

Warren et al. (2007) recently presented SSAKE, an algorithm to be
used for assembling short-read sequences. To evaluate the per-
formance of SHARCGS relative to SSAKE, we compared assembly
results achieved with either algorithm. We chose eight BACs
(three each for Drosophila and Arabidopsis and two for human)
out of our 60-BAC test set, namely for each species the clone with
the largest insert, as well as the clones with the largest and the
minimal proportion of repetitive DNA. For human, BACs were
selected from the autosomes, thereby excluding the Y chromo-
some, which has atypical genomic organization. The largest hu-
man clone was at the same time the clone with the highest repeat
content.

Even though SSAKE does have a “stringent” mode imple-
mented that should in principle avoid the extension of contigs
across regions of ambiguity, in practice a large number of false
joins were observed. In realistic simulations with missing reads
and sequencing errors, 25% (on average, range 0%–58%) of
SSAKE contigs could not be aligned to the BAC reference se-
quence. This indicates that the performance of SSAKE is particu-
larly vulnerable to the presence of sequencing errors in a read
data set. Considering only correct SSAKE contigs, an average BAC
insert coverage of 76% was determined. In contrast, all contigs
generated by SHARCGS could be perfectly aligned to the source
sequences. The fraction of each BAC insert sequence covered
with SHARCGS contigs was on average 93% (Supplementary
Table 2). We conclude that the large proportion of unmatched
contigs will seriously limit the utility of the Warren et al. (2007)
algorithm as a tool for de novo assembly.

We have attempted a similar comparison with the Euler2
algorithm from Pevzner et al. (2001). Although we have tweaked
the source code to make Euler2 accept millions of input reads, the
algorithm did not finish a single assembly under realistic as-
sumptions within one day on a 64-GB Opteron machine. The
large amounts of input data apparently cause this assembler to

Figure 5. Summary of decrease in N50 size due to pooling (for corre-
sponding coverages, see Fig. 4). The plot compares N50 values for a
given pool size with the optimal N50 achieved for pool size 1. The lines
show the average fraction of N50 per pool size divided by the optimal
(“best”) N50. For each pool size, we average over 20 BACs and three
simulations each, using the same data as in Fig. 4.

Table 2. Assembly properties for assemblies with simulated reads of Saccharomyces cerevisiae chromosome 5 (coverage 130-, 260-,
138-fold) and chromosome 7 (coverage 270-, 135-, 146-fold) and the complete genomes of Haemophilus influenzae (coverage 154- and
164-fold) and Escherichia coli (coverage 95-, 127-, 135-fold)

1 2 3 4 5 6 7 8 9 10 11
Species GenBank Seq. length Reads (Mio) Read length Contigs Mean Max N50 N80 Seq. cov. (%)

S. cer 5 NC_001137 576,869 2.5 30 237 2,379 41,960 16,096 5,137 97.36
S. cer 5 NC_001137 576,869 5 30 319 1,793 54,053 27,975 17,848 98.23
S. cer 5 NC_001137 576,869 2.5 32 233 2,423 42,420 16,987 5,621 97.45
S. cer 7 NC_001139 1,090,946 10 30 330 3,262 60,516 24,771 10,280 98.32
S. cer 7 NC_001139 1,090,946 5 30 367 2,914 32,709 9,737 3,700 97.77
S. cer 7 NC_001139 1,090,946 5 32 300 3,568 46,493 15,820 6,715 97.88
H. inf NC_007146 1,940,763 10 30 665 2,868 103,086 19,450 8,142 97.92
H. inf NC_007146 1,940,763 10 32 653 2,923 103,089 21,922 9,767 98.00
E. col NC_000913 4,705,957 15 30 1,884 2,445 51,458 6,201 2,950 97.50
E. col NC_000913 4,705,957 20 30 1,389 3,321 61,490 12,438 5,925 97.78
E. col NC_000913 4,705,957 20 32 1,335 3,463 74,089 16,035 7,313 98.00

Simulation assumptions were realistic, i.e., with missing reads and sequencing error rate of 0.6% per base. Column labels: 1, species name (abbreviated);
2, GenBank accession number; 3, length of GenBank reference sequence; 4, number of reads used for assembly (in millions);
5, read length (bases); 6, number of SHARCGS contigs >50 bp; 7, average contig length (only contigs >50 bp were counted); 8, largest contig observed
in assembly; 9, N50 length of assembly; 10, N80 length of assembly; 11, percent coverage of reference sequence with SHARCGS contigs. All contigs
could be aligned against the reference sequence error- and gap-free.
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generate exceedingly large A-Bruijn graphs with many millions
of nodes. In particular when many sequencing errors render the
graphs complex, Euler2 runs into performance problems. Under
idealized assumptions, Euler2 was able to generate assemblies for
five of our BACs. The resulting Euler2 assemblies, however, con-
tained various wrong contigs of length up to 33 kbp. The correct
contigs covered between 33% and 95% of the target sequence
with N50 between 53 bp and 51 kbp. We conclude from these
results that Euler2 is not well adapted to this particular assembly
task.

Conclusions

There are multiple applications for microread-sequencing tech-
nologies, including genome resequencing, genotyping, tran-
script identification and profiling, transcription factor binding
site analysis, and methylome characterization. SHARCGS ex-
tends the portfolio of applications to comprise de novo sequence
assembly. Our evaluation of SHARCGS was based both on simu-
lated reads and on reads generated on the Illumina 1G sequencer.
We have shown that SHARCGS generates error-free contigs from
short-read data containing as much as 1.5% of sequencing errors,
as long as high coverage of the target genome is provided (200-
fold or more). With these conditions, we assembled a bacterial
genome with a size of 1.6 Mpb (H. acinonychis). Assuming that
the accuracy of short-read sequencing technologies will improve,
larger bacterial genomes are realistic targets, as shown for the
4.4-Mbp genome of E. coli on simulated reads with an error rate
of 0.6%. To assemble more complex eukaryotic genomes, a BAC-
wise approach may be considered. The choice of the BAC pool
size depends on the repeat content of the genome.

In the present implementation of our algorithm, single-
nucleotide polymorphisms would cause spurious contig breaks.
If BACs from the same chromosomal region derived from differ-
ent haplotypes were sequenced in one single pool, sequence vari-

ants may be discarded from the data set,
unless indices were used.

Microread-based assemblies can easily
be improved, e.g., by integration of reads
from HTP pyrosequencing or conventional
Sanger reads at low coverage. These modifi-
cations consolidate the assembly by bridg-
ing gaps and regions of ambiguity.

Methods

The SHARCGS algorithm consists of a filter-
ing step to avoid reads with sequencing er-
rors, an assembly step to generate contigs,
and a final contig merging step including
computation of quality measures.

Filtering for confirmed reads
SHARCGS obtains a large set of reads of
equal length, optionally augmented by
quality scores per base call, as its input.
Thereby, it is adapted to cope with a sub-
stantial number of reads with sequencing
errors. When the error rate per base call is
0.6%, about 16% of 30-mer reads contain
errors. Pcorrect, the probability that a single
read contains no sequencing errors can be

estimated by the product of all its base calls being correct inde-
pendently. Thus:

Pcorrect = �1 − Perror�
r

where Perror represents the error rate per base call and r the
read length.

In order to assemble reliable contigs, we suggest removing
unconfirmed low-quality reads from the assembly. We consider a
read as being confirmed when the following two conditions
hold: Reads are generated multiple times, and overlapping part-
ners exist. Without quality scores, SHARCGS simply filters for
reads generated at least n times, n being a parameter of this fil-
tering step. When quality measures are available, the first filter-
ing step is modified: SHARCGS then filters for reads having high
minimal quality values. Quality values of all occurrences of a read
on the same or the opposite strand are combined, similar to
Phrap (Ewing and Green 1994), i.e., the maximum is used when
a confirmation comes from the same strand, while the sum is
used for confirmations from the opposite strand. The minimal
quality threshold q is a parameter of this filtering variant. When
reads are generated with very high coverage, some wrong reads
may pass the first filtering step. For instance, when simulating
300,000 30-mer reads with an error rate of 0.6% per base call
from a 90-kbp target sequence (i.e., coverage ∼100), we observe
up to 500 wrong reads among those generated twice.

In simulations, the second criterion allows the removal of
virtually all wrong reads left over after the first filtering step, at
the expense of discarding very few correct ones. In this second
filtering step, our algorithm removes reads that lack partners
with perfectly matching overlap. The minimal overlap used to
search for matching partners is a parameter of this filtering step,
to be chosen larger than half of the read length. We consider
reads to be confirmed, if at least one matching partner exists for
each of its ends, thus if it is covered entirely at least twice. Reads
containing sequencing errors are very unlikely to find partners
on both sides.

Table 3. Assemblies on 11.8 Mio reads of length 32 from Helicobacter acinonychis
(GenBank NC_008229) and plasmid pHac1 (GenBank AM260523) generated on the
Illumina 1G sequencera

Reads Contigs
Not

matched
Mean
length

Max
length N50 N80

Seq.
cov.
(%)

a Q > 20 1,174,569 1,330 5 1,157 10,866 2,257 1,015 97.39
Q > 25 1,098,233 1,379 5 1,110 13,684 2,232 958 97.16
Q > 30 1,034,034 1,628 4 937 13,673 1,893 772 96.49
Q > 35 978,900 1,967 4 773 13,020 1,558 597 96.33

b Merged 932 5 1,603 18,577 3,476 1,364 95.21
c All merged 937 1,636 18,854 3,659 1,501 97.70
d Contig

overlap
>5 bp

228 6,762 62,478 19,890 8,012 97.70

aThe reference sequences have a cumulative length of 1,557,588 bp. During assemblies, gaps of
length 10 were spanned. (a) Results from single assembly runs with filter settings Q > 20 to Q > 35.
(b) Merged assembly generated from results of the single run assemblies in (a). (c) As in (b), with
unmatched contigs included in the assembly statistics. See Results section for a description of
unmatched contigs. (d) Statistics for an assembly achieved by merging contigs which are con-
secutive on the reference sequence and overlap by at least 5 bp. Column designations: Reads,
number of unique reads left after SHARCGS filtering for minimal quality scores; Contigs, number of
SHARCGS contigs > 50 (for a and b, the number refers to perfectly matched contigs; in c and d, five
contigs that have 1–4 discrepancies relative to the reference sequence are included); Not matched,
number of contigs not matching the reference sequence; these contigs are not taken into account
for Mean length, N50, N80, or Seq. cov.; Mean length, average length of the contigs; Max length,
size of largest contig assembled; N50, N50 length of assembly; N80, N80 length of assembly; Seq.
cov., coverage of the reference sequence in percent.
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After the filtering steps, SHARCGS generates reverse comple-
ments for all confirmed reads and keeps only one copy of each
read, before starting the core assembly algorithm.

The core assembly algorithm
The core assembly algorithm is based on a contig extension
scheme using a prefix-tree to look up potential extensions effi-
ciently. Reads are used in turn to nucleate novel contigs. A contig
is elongated at its end, as long as we find reads with a prefix of
minimal length, which perfectly matches the end of the contig.
The algorithm tries to extend the current contig by the second
part of the matching read but first checks both strands for am-
biguities. Such ambiguities occur when parts of the sequence are
repeated. At the end of a repeat, the prefix of two reads will
match to the repeated sequence, but their suffixes will match to
different parts of the sequence that cannot be arranged unam-
biguously. In this case, the elongation of the contig is termi-
nated. We search for ambiguities using prefixes of minimal
length extracted from each of the last few positions of the puta-
tive contig’s end. Each of these prefixes is used to search for other
reads which start with the same prefix, and all such reads must
match perfectly to the end of the putative contig. By applying
this approach, we are able to detect ambiguities although several
reads in a row may be missing from the input data. After the
elongation of a contig at its 3� end has been terminated, we
compute its reverse complement and try the elongation at the
other end the same way. An illustration of the elongation step
and the core assembly algorithm’s pseudocode is given in Figure 6.

Merging contigs from several assembly runs and generation
of quality measures
Setting the filtering parameters to very stringent levels discards
large amounts of data from the input. The resulting assembly has
very short contigs, because reads from too many positions in the
target sequence are unavailable. When including weakly con-
firmed reads in the assembly, it is more difficult to filter reads
containing sequencing errors. Such reads, however, would stop
the algorithm from assembling long contigs, since reads contain-
ing sequencing errors cause spurious ambiguities. The contig
breaks due to confirmed reads with sequencing errors tolerated
by weak filtering are unlikely to occur at the same positions as
the contig breaks caused by missing reads after application of
strong filtering criteria. This is why we run the core assembly
algorithm automatically for weak, medium, and strong filter
parameter settings. For each parameter setting, the core algo-
rithm only generates contigs contained in the target sequence.
SHARCGS attempts to merge contigs from different core assem-
bly runs by finding exact overlaps at least as long as the read
length.

If quality measures are supplied with the raw reads, SHARCGS
computes quality measures for any position in all contigs. It
adopts the paradigm described in the Phrap documentation (Ew-
ing and Green 1994). For a given position x in a contig, SHARCGS
finds all covering reads and selects the best quality measure ob-
served for x. It does the same for the opposite strand and adds the
two quality measures to obtain the final value.

Fine-tuning parameters
We have introduced two parameters for our algorithm: the con-
firmation level for filtering incorrect reads and the minimal over-
lap used in the second filtering step as well as in the contig
elongation step. The proper setting of both is crucial for the as-
sembler’s reliability, and thus we provide automated conserva-
tive settings as described below.

The optimal setting of both parameters depends on the
length of the target sequence. We use the abundance of reads
generated several times as a fingerprint of the target sequence
length. We expect the number of reads generated x times to be
distributed according to a binomial distribution with parameters
k, the number of reads generated, and P, the probability to read
correctly at a given position in the target sequence. The prob-
ability P is given by Pcorrect/n, where n is the length of the target
sequence. In the input data, we can count the number of
reads generated x times for any x. In a maximum likelihood ap-
proach, we determine the combination of error rate and target
sequence length, which most probably causes the distribution of
read confirmations observed in the input data. This estimation is
accurate in simulated data (within 5% of the real sequence
length).

According to the target sequence length n, we determine the
confirmation levels for which n/2 (strong filtering) to n (weak
filtering) reads pass the filter. At most we expect to observe one
read per position in the target sequence, so we do not expect to
have more than n correct reads. Moreover, we do not expect to be
able to assemble input data with decent quality, if more than half
of the reads are missing.

The minimal overlap with which the core assembly algo-
rithm should check for ambiguities, as well as the minimal over-
lap used in the second filtering step to detect unreliable reads,
depends on the lengths of gaps expected in the input data. In this

Figure 6. Description of the core assembly algorithm. (A) Pseudocode
overview of the steps during assembly of a single contig. The parameter
omin controls the stringency of the algorithm, and r denotes the read
length. (B) Illustration of the elongation step. Contig C is to be elongated
to the right. Read R is a candidate for elongation found in the data set of
reads, because its prefix (gray) matches the end of C perfectly. The suffix
of read R (white) is the potential extension E for contig C. The length of
the check region M is the sum of read length r, and the length of the
extension E. Substrings of M and its reverse complement are used to
search for matching read prefixes in the data set. Only if all of these reads
match M exactly is C extended by E.
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context, we call gaps runs of consecutive positions for which no
confirmed read is available. The probability Pg that a gap at least
of length g starts at a given position depends on the number of
available reads navail and the length of the target sequence n as
follows:

Pg = �1 − Pmiss�Pmiss
g ;Pmiss = navail � n

where Pmiss is the probability of no confirmed read being avail-
able at a given position. The number of such gaps expected in the
whole target sequence is n · Pg. We suggest setting the minimal
overlap omin such that the expected number of gaps larger than
r � omin is <1, r being the read length.

Implementation
We have implemented all steps of the described algorithm in Perl
and tested the script under version 5.8.4 of this scripting lan-
guage. The program runs from any Linux shell without installa-
tion of additional software or modules. Full documentation and
a user introduction are included in the script and may be viewed
by calling the program without any parameters. The assembly of
a BAC of size 100 kbp typically takes <15 min on an Intel Xeon
2.8-GHz 32-bit Linux machine. The corresponding memory foot-
print of our program is smaller than 1 GB of RAM. The assembly
of E. coli takes less than 10 h and uses 24 GB of RAM on an AMD
Opteron 2.8-GHz 64-bit Linux machine. The filtering step for the
assembly of H. acinonychis takes <1 h and uses 24 GB of RAM. The
assemblies of H. acinonychis at four different Q levels and the final
merging take 4 h in total and use 6 GB of RAM.

Evaluation
In order to evaluate the performance of our algorithm, we have
simulated short reads from a number of sequences, computed
contigs, and matched them back to the reference sequences.
Since our method is particularly valuable to the de novo sequenc-
ing of BAC inserts, we chose three eukaryotic BAC libraries, i.e.,
the Clemson T-BAC library (Choi et al. 1995) for Arabidopsis
thaliana, RPCI-98 (Hoskins et al. 2000) for Drosophila melanogas-
ter, and RPCI-11 (Osoegawa et al. 2001) for Homo sapiens for the
selection of sequenced BAC inserts as target sequences. We col-
lected all sequenced BAC inserts of these libraries from the NCBI
nucleotide database (http://www.ncbi.nlm.nih.gov, version as of
December 2006) and sorted the sequences by length. We chose
20 successive BAC insert sequences from each of the three data
sets so that the average sequence length for each of the species
was ∼110 kbp (112 kbp in A. thaliana, 109 kbp in D. melanogaster,
and 110 kbp in H. sapiens). In order to mimic the real situation
for sequencing even more closely, we added the sequence of the
cloning vector pBACe3.6 to each of the test sequences and fil-
tered all contigs matched to this vector before evaluating the
assembly results.

Short-read generation in silico
We have implemented a program that simulates short reads from
input target sequences. Parameters for this Perl script are the read
length, the number of reads, and the average error rate per base
call. The script generates reads from any position in the target
sequence with equal probability and decides for each base call
independently with a constant error probability whether it is
generated correctly. When introducing an error, our simulation
program decides with equal probability for one of the three pos-
sible substitution errors.

Preparation of fragment libraries and Illumina sequencing
Genomic DNA was fragmented by nebulization. Sheared frag-
ments were processed according to the recommended Solexa/
Illumina protocol (end repair, A-tailing, adapter ligation, size se-
lection, and preamplification). Amplified material was loaded
onto channels of the flow cells at 2 pM and 4 pM concentration.
Sequencing was carried out by running 36 cycles on the 1G Illu-
mina sequencing instrument. Image deconvolution and quality
value calculation were performed using the Goat module (Fire-
crest v.1.8.28 and Bustard v.1.8.28 programs) of the Illumina
pipeline v.0.2.2.3. Per-base error rates were calculated on the ba-
sis of alignments generated with ELAND (Gerald module v.1.27
of the Illumina pipeline).

Program and data availability
The programs and data generated in this work are available from
our Web site http://sharcgs.molgen.mpg.de.
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Note added in proof

A re-inspection of the H. acinonychis Sanger assembly has pro-
vided support that three of five not matched SHARCGS contigs
(Table 3b) are correct (Stephan C. Schuster, pers. comm.)
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